Texas Instruments e
TI-99/4 Home Computer

TI

Extended
BASIC

FOR THE TI-99/4 HOME COMPUTER




IMPORTANT NOTICE REGARDING

PROGRAMS AND BOOK MATERIALS

The following should be read and understood before purchasing and/or using
TI Extended BASIC.

Texas Instruments does not warrant that the programs centained in the T
Extended BASIC module and accompanying book materials will meet the
specific requirements of the consumer, or that the programs and book
materials will be free from error. The consumer assumes complete
responsibility for any decision made or actions taken based on information
obtained using these programs and book materials. Any statements made
concerning the utility of TI's programs and book materials are not to be
construed as express or implied warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THESE PROGRAMS OR BOOK MATERIALS OR ANY PROGRAMS
DERIVED THEREFROM AND MAKES SUCH MATERIALS AVAILABLE SOLELY
ON AN 'AS IS" BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH OR ARISING OUT OF THE PURCHASE OR USE OF THESE
PROGRAMS OR BOOK MATERIALS, AND THE SOLE AND EXCLUSIVE
LIABILITY OF TEXAS INSTRUMENTS, REGARDLESS OF THE FORM OF
ACTION, SHALL NOT EXCEED THE PURCHASE PRICE OF THIS MODULE.
MOREOVER, TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM
OF ANY KIND WHATSOEVER AGAINST THE USER OF THESE PROGRAMS OR
BOOK MATERIALS BY ANY OTHER PARTY.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages, so the above limitations or exclusions may not apply
to you.

!

‘F‘| )

TI Extended BASIC

FOR THE Ti-99/4 HOME COMPUTER

A powerlul, high-level programming language that
expands the capability of your T1-99/4 Home
Computer. Inciudes these features:

= More than 40 new or expanded commands,
statements, functions, and subprograms.

u Multiple-siatement lines for speed and
eificiency.

W Sprite (moving graphics) capablility.

m Subprogram capability that lets you store
commonly used subprograms on diskelte for
use as needed.

B The ability to load and run one program from
another.

m Comprehensive program conltrol of arrars,
warnings, and breakpoints.

B Direct screen control of input and oufput.

m Support for loading and running TM58900
Assembly Language programs if the optional
Memory Expansion unit (sold separately) Is
attached to the computer.

Copynght 20 1981 Texas Instruments Incorporated

Program and data base conients
copyrght £ 1881 Texas instrumenis Incorgorated.

See mportanrt waranty information at back o' DOOX.




This book was developed and written by:

Robert E. Whitsitt, II
and other staff members of the Texas Instruments Leaming Center

and the Texas Instruments Personal Computer Division.

With contributions by:
Tom M. Ferrio
Stanley R. Hume
Jacquelyn F. Quiram

Artwork and layout were coordinated and executed by:

Schenck Design Associates. Inc.

1SRN #0-89512-045-3
Library of Congress Catalag #80-54899

Copyright 71 1981 by Texas Instruments [nesrporated

Table of Contents

Chapterl—lNTRODUCTION.__...‘.........‘.___..._...,,A._

Page

1 Extended BASIC

Features . . - 8
Changes from TI BAS]C 10
HowtoUSCthlSManual B {8
How to Use the Compu[er .................................... 11
Opera(mginTIExtendedBASIC...A............A.............. 11
Special Key Functions . . C e 12
Chapter2—OVERVIEW OF TIEXTENDEDBASIC . . ... ... ..... . 15
Commands . 16
Assignments and Input 17
Output ...... . 1.
Functions, Subroutme and Subprog:,rams ....................... 19
Built-in Functions . . . ... .. ... . 20
User-Defined Functions . .. . ... . ... . ... . .. 21
Subroutines . . . .. .. 21
Built-in Subprograms . .. ... ... ..o 21
User-Written Subprograms . . . ... ... ... oo 23
Sound, Speech.andCaolor . . ... .. ... ... L 24
Sprites .. ... .. 25
Debugging . .. ... ... ... 25
ErorHandling . .. .......... ... ... .. ... .. .. .. ... . ... .. 26
Program Entry Example ... ... . ......... ... o000 27
Chapter 3 — TIEXTENDED BASIC CONVENTIONS . . ... . ... . ... ... 37
RunningaProgramonPowerup . ... ....... . ................... 33
Files . . . 33
Line Numbers . 33
Lines. e e B8
Special Sym bols ........................................... 38
Spaces ... 39
NumericConstants.....,....",,,.....,....A.,,.,........:: 39
String Constants . . .. . ... ... 39
Variables. .. .. ... 39
Numeric Expressions .. ... ... ... ... ... ... 41
Sting EXpressions .. ... .. ... 4]
RelationalExpressions..‘._......._..‘................_..: 41
Logical Expressions . ... .. .. ... ... .. ................. ... .... 42
T Extended BASIC 3



TABLE OF CONTENTS TABLE OF CONTENTS

Chapter 4 — REFERENCESECTION . . ... .. ................ ... 45 LET o oovmn oot
ABS .. 16 LINK . .o 112
ACCEPT ... .. 47 LINPUT oo 113
ASC . e 50 LIST - oo oo e e
AN e 51 LOAD ... 115
BREAK . .. ... e 52 LOCATE . . -« 116
BYE e 5‘_‘ LOG .« oo 117
CALL .. 5:)‘ MAGNIFY . ... .. 118
CHAR o o oo o e 56 MAX ..o 121
CHARPAT . . o oo o oo 59 MERGE . ...... .. ... ... 122
CHARSET . - ..ot 60 MIN . oo 124
CHERS . . e 60 MOTION ... ... T
CLEAR . . .ot 61 NEW ... 125
CLOSE o 62 NEXT ... . 127
COING 64 NUMBER . ...... .. ... . .. ... ... ... . 128
COLOR . .« o oo 66 OLD ... 129
CONTINUE o 68 ONBREAK ... ... . ... ... ... ... ... ... .. . ... 130
COS o e 69 ONERROR . ....... ... ... ... .. . .. .. . ... ... 131
DATA - o oo o 70 ONGOSUB ....... ... ... ... ... . ... ... .. .. .. ... 133
DEF o o o o 72 ONGOTO .......... ... ... .. .. .. ... ... ... 135
DELETE . . e e 74 ON WARNING . .. . .. 137
DELSPRITE . . oo 75 OPEN .. ... 138
DIM . 76 OPTION BASE o . 14;
DISPLAY . . o oo 77 PATTERN.. ... .. .. ... ... ... .. .. ... .. ... . .. ... ... 149
DISPLAY...USING . . . . 79 PEEK ... ... 143
DISTANCE o o 80 Pl 144
END . oo oo 81 POS ... 145
BOF a2 POSITION ......... ... .. ... . ... ... . . . . oo 146
ERR . oo 83 PRINT .. ... 147
EXP . oo #5 PRINTUSING ... ... .. . .. . . 15¢
FOR-TO-STEP . .. e e i sl .. B RANDOMIZE ... ... .. .. ... . .. oo 151
GCHARSS I;Rggn .................................................. 152
GOSUB .« o oo 8 REN e 153
GOT O . . e e e e ~r ____________________________________________________ 154
HCHAR e 92 RESEQUENCE .. .. . 155
IF-THEN-ELSE .. . .o e RESTORE ... . ... ... . .. . . e 156
IMAGE © . 97 RETURN (with GOSUB) ... ...... ... ... . 157
INIT oo oo e 101 RETURN[withONERROR)_.__...,‘_.................._..... 158
INPUT . o oo oo 102 RND159
INPUT iwith files) . . . .o e 104 léPTS .............................................. 160
INT 107 SUM ................................................... 161
JOYST o oo 108 AVE 163
KEY - oo 109 SAY 164
LEN ot 110 SCREEN 165
4 TI Extendedt BASIC M Extendeq BASIC 5



TABLE OF CONTENTS

SEGS . e 166
SGN 167
SIN e 168
SIZE . . e 169
SOUND .. . 170
SPGET . . 172
SPRITE . . . . o 173
SR .. e 178
STOP . . . 178
ST RS . . 179
SUB . . v e 180
SUBhND ................................................. 184
SUBEXIT . . e e 184
TAB .. 185
TAN 186
TRACE . . 186
UNBREAK . . .. 18T
UNTRACE 187
VAL .. .188
VCHAR P - 1=
VERSION .. . . e e 190
APPENDICES
Appendix A — List ol Illustrative Pregrams . ... ... ... ... .. . 0. 192
Appendix B — List of Commands, Statements, and Functions .. ... ... 194
Appendix C —ASCIICodes . . ... ... ... ... ... ... ... ... 196
Appendix D — Musical Tone Frequencies .. ................ ... ... 197
Appendix E — CharacterSets . ... ... ... ... ... ... L. 198
Appendix F — Paitern-ldentifier Conversion Table . . .. ... ... .. .. 198
Appendix G —ColorCodes . .. ................................199

Appendix H — Color Combinations . . .. .. ......... .. ... .. ... .. 200
Appendix1 — Spiit Console Keyboard . ... ... ... ... .. .. .. .. 201
AppendixJ — Character Codes for $plit Keyboard . ... .. ... .. .. 201
Appendix K — Mathematical Functions ... ... ... . ... ... .. 202
Appendix L — List of Speech Words . ... .. C ... 203
Appendix M — Adding Suffixes to Spwch Words e . 206
Appendix N — Error Messages ... .. .. C 912

CHAPTER

11 Extended BASIC

Introduction

Tl Extended BASIC



INTRODUCTION

FEATURES

Texas Instruments Extended BASIC is a powerful computer programming
language for use with the Texas Instruments T[-99/4 Home Computer. It has
the features expected from a high level language plus additional features not
available in many other languages, including those designed for use with
large, expensive compulers.

TI Extended BASIC goes beyond Texas Instruments BASIC to enhance the

capability and flexibility of your computer system by adding these features:

B Input and Qutput — The ACCEPT statement allows the input of data from
anywhere on the screen. You may clear the screen, accept only certain
characters. and limil the number of characers entered using this
statement. The DISPLAY statement has been enhanced to allow putting
data anywhere on the screen, and DISPLAY ... USING, PRINT ... USING.
and IMAGE have been added for ease in formatting data on the display
screen and peripheral devices,

B Subprograms — Subprograms with local variables {affecting only values
within the subprogram) can be written in Tl Extended BASIC. Commanly
uscd subprograms may be stored on a diskette and added to programs as
needed. Statements included are SUB, SUBEND. and SUBEXIT. The
MERGE command has been added and the SAVE command moditied 10
allow the merging of programs {rom diskettes.

@ Sprites — Sprites are specially defined graphics with the abilily to move
smoothly on the screen. To provide the sprite capability, the following
subprograms have been included in TI Extended BASIC: COINC,
DELSPRITE. DISTANCE, LOCATE. MAGNIFY, MOTION. PATTERN,
POSITION, and SPRITE. COLOR and CHAR have been redesigned so they
also can aflcel sprites.

B Functicns — MAX, returning the larger of two numbers: MIN, returning
the smaller of twe numbers; and PI, returning the value of 7, have been
included in TI Extended BASIC.

B Arrays — Arrays may have up to seven dimensions instead of three.
8 String Handling — The RPTS function allows the repetition of a string.

@ Error Handling — With TI Extended BASIC. vou can choose what action
is taken il therce is a minor error {(which in TI BASIC causes a warning
message), a major error (which in TI BASIC causes an error message and
stops the program), or a breakpoint (which in T1 BASIC causes the
program to hall). The new statements allowing this control are ON
WARNING, ON ERROR. and ON BREAK. RETURN has been modified {or
use with crror handling. The CALL ERR statement can be used 10
determine the nature ol an crror that occurs in a program.

H TIExtended BASIC

CHAPTER

8 RUN as a Statement — RUN can be used as a slatement as well as a
command. RUN has also been modified to allow you to specily which
program to run. As a result, one program can load and run ancther
program from a diskeite. You can. therelore, write programs of almost
unlimited size by breaking them into picees and letting each segment rur
the next.

B Power-up Program Execution — When TI Extended BASIC is first chosen,
it searches for a program named LOAD on the diskette in disk drive 1. If
that program exists, it is placed in memory and run.

B Multiple Statement Lines — Tl Extended BASIC allows more than one
statement to be on a line. This feature speeds program cxccution, saves
memory, and allows logical units (for example FOR-NEXT loops) to be onra
single line,

B SAVE and LIST Pratection — You may proteci your programs from being
saved or listed, preventing unauthorized copies of and changes in vour
programs. This, in conjunction with the copy protection leature of the
Disk Manager Module, can completely secure a Tl Extended BASIC
program,

M [F-THEN-ELSE — Thce IF-THEN-ELSE slatement now allows statements as
the consequences of the comparison. This expansion permils statements
such as 'IF X< 4 THEN GOSUB 240 ELSE X=X +1".

B Muliiple Assignments — T1 Extended BASIC allows vou to assign a value
to more than one variable in a LET statermnent. saving statements and
permitting more efficient programming.

B Comments — In addition to the REM statermnent. comments can be added
to the ends of lines in Tl Extended BASIC, allowing detailed internal
documentalion of programs.

M Assembly Language Support — With the optional Memory Expansion unit
{available separalely). TMS9900 assembly language subprograms may be
loaded and run. The subprograms INIT, LOAD, LINK, and PEEK are used
1o access assembly language subprograms. There are no facilities for
writing assembly language programs on the TI-99/4 Home Computer.

8 Information — The SIZE command has been added to tell you how much
memory remains unused in your computer. The VERSION subprogram
returns a value which indicales the version of BASIC that is in use. The
CHARPAT subprogram returns a character string indicaling the pattern
which detines a character.

8 Memory Expansion — T1 Extended BASIC allows the use of an optional
Memeory Expansion peripheral which sermits much larger programs to be
written.

T Extended DBASIC 9



INTRODUCTION

CHANGES FROM T1 BASIC
The enhancements described above have made some slight changes
necessary in other areas of TI BASIC. Because of these, some programs
written in T1-99/4 BASIC may not run in T]1 Extended BASIC.

B The maximum program size is now 864 bytes smaller than in TI BASIC. If
you have the Memory Expansion peripheral, much larger programs may
be written.

B The characters in character sets 15 and 16 are no longer available. That
memory area is used by T1 Extended BASIC to keep track of sprites.

B Most programs written in TI BASIC will also run in TI Extended BASIC

witheut difficulty. Under certain circumstances, however, such as using a

TI Extended BASIC keyword as a variable in a TI BASIC program,

programs written in TI BASIC may not run in TI Extended BASIC.

However, you can always load TI BASIC programs into Tl Extended

BASIC. Programs using the enhancemenis of T Extended BASIC will not

run correctly in TT BASIC.

HOW TO USE THIS MANUAL

This manual assumes that you are already experienced in programming with
TI BASIC. Statements, commands. and functions that are the same as in TI
BASIC are only discussed briefly here. For a complete discussion, see the
User’s Reference Guide that came with your TI-99/4 Home Computer.

The additional features of TI Extended BASIC are explained in detail and
illustrated with examples and programs. To get the maximuin use from TI
Extended BASIC, read this manual carefully, entering and running the
sample programs to see how they work. Even features that are unchanged
from TI BASIC stould be reviewed. You may find that you have been
neglecting a useful statement or discover a new way o use statements in
different combinations.

The remainder of this chapter reviews the basics of operating with TI
Extended BASIC. The second chapter discusses (he features of Tl Extended
BASIC and includes a detailed example of entering a program. The third
chapter discusses the conventions of operation with TI Extended BASIC. The
fourth chapter is a reference section which discusses, in alphabetical order,
all TI Extended BASIC commands, statements, and functions.

The 14 appendices contain much useful information, including ASCII
character codes, error codes, color codes, keyboard codes, and insiructions
on how to add suffixes 1o speech words.

10 Tl Extended BASI

HOW TO USE THE COMPUTER

Before using the computer with TI Extended BASIC, you must insert the
Solid State Software™ Command Module into the computer., 'If .the computer
is off, slowly slide the module into the slot on the console until it is in place.

Then turn the computer on. (if you have peripherals. turn them on before
turning on the computer.} The master title screen appears. If the computer is
already on, return to the master title screen. Then slide the medule Into the

slot.

Press any key to make the master selection list appear. The title of the
moedule, TI EXTENDED BASIC, is third on the list. Type 3 to select TI
Extended BASIC.

OFERATING IN TI EXTENDED BASIC
There are three main operating modes in TI Extended BASIC: Command
Mode, Edit Mode, and Run Mode.

Command Mode is the mode entered when you choose TI Extended BASIC
on the master setection list. In the Command Mode you may enter TI
Extended BASIC commands, statements that may be used as commands,
and program lines.

Edit Mode is used to edit existing lines of a TI Extended BASIC program. To
enter Edit Mode, type a line number and press either SHIFT E (UP) or SHIFT X
(DOWN). (T]1 BASIC also allows EDIT followed by a line number. which TI
Extended BASIC does not allow.) The line specified is then displayed on the
screen. You may change it by typing a new line, by typing over par% of the
old line, or by using the editing keys discussed velow. You are al.so in the
Edit Mode when you press SHIFT R (REDO) to repeat a program line or

command.

In Run Mode, a TI Extended BASIC program is executed. You can stop a
running program only by pressing SHIFT € (CLEAR), which causes a
breakpoint, or with SHIFT Q (QUIT). Note: SHIFT Q (QUIT) also erases the
entire program, returns you to the master title screen, and may delete.
information from some of your files. The use of BYE is recommended in place
of SHIFT @ (QUIT) to leave TI Extended BASIC.

S 11
TI Extended BASIC



INTRODUCTION

D BHEE B
[o 1 D] T L LA LI D ETE]
R L L L L B ) ]

| |

SPECIAL KEY FUNCTIONS

The following are the keys that have a special function when pressed at the
same time as the SHIFT key: E, D, 8, X, R, T, G, F, C, Q. Each of ihese keys is
discussed below.

SHIFT E (UP) is used in the Edit Mode. If you are not in the Edit Mode, you
may enter it by typing a line number and then pressing SHIFT E (UP). The
line specified is then displayed on the screen and may be edited. If you are
already in the Edil Mode. pressing SHIFT E (UP) enters the present line as you
have changed it and displays the next lower numbered line in the program.
Pressing SHIFT E (UP) when you are at the lowest numbered line in the
program returns you to the Command Mode. If you are entering a line in Lhe
Command Mode, SHIFT E (UP) has the same effect as ENTER.

SHIFT B (RIGHT) moves the cursor one space to the right. The cursor does not
erase or change the characiers as it passes over them. Al the end of a line on
the screen, the cursor wraps around to the next screen line. When the cursor
is at the end of an input line, it does not move.

SHIFT $ (LEFT) moves the cursor one space te the left. The cursor does not
€rase or change characters as it passes over tnem. If the cursor is at the
beginning of a line, the cursor does not move. If the cursor is af the left

margin but not at the beginning of an input line, the cursor goes to the right
margin of the screen line above it.

12 TiExlended BASIC

CHAPTER

SHIFT X (DOWN) is used in the Edit Mode. If you are not in the Edit Mode, you
may enter it by typing a line number and then pressing SHIFT X (DOWN). The
line specified by the line number is then displayed on the,screen and may be
edited. If you are in the Edit Mode, pressing SHIFT X {(DOW N! enters the
present line as you have changed it and displays the next higher nur_nbered
line in the program. Pressing SHIFT X (DOWN) when you are at the highest
numbered line in the program returns you to the Command Mode. If you are
entering a line in the Command Mode, SHIFT X {DOWN) has the same effect

as ENTER.

SHIFT R (REDO) causes the characters on the line previouslsly.input to
reappear on the screen. Thus if you wish to enter a line sm_nlar to the most
recently entered line, press SHIFT R {REDQ). If you enter a line and‘ mall(e a
mistake, you can recall the line using SHIFT R (REDO} and correct it using the
Edit Mode features. This key lets you avoid retyping a long line,

SHIFT T (ERASE) erases all characters on the current line, but leaves the
cursor on that line. If you are in the Command Mode, the cursor re-turns to‘
the left margin of the screen and you may enter a new line, includi.n_g the line
number. However, if vou are editing a line or the computer is providing the
line numbers (through the use of NUM). the line number is not erased.

BHIFT & {(INSERT) instructs the computer to accept inserted characters. Each
subsequent key that you type is inserted at the cursor position and the
character at the cursor position and all characters to the right of the cursor
are shifted one position to the right. Insertion continues with each character
typed until ENTER or one of the other special function keys is pressed.
Characters at the end of a long input line may be lost.

SHIFT F (DELETE]} deletes the character that the cursor is on and shifts all
characters to the right of the cursor one position to the left.

SHIFT C (CLEAR) performs different functions depending on the mode that
you are in. If you are in the Edit Mode, any changes that were made to the
line are ignored, including SHIFT T (ERASE), and the computer retun:ns to
Command Mode. If you are in Run Mode, the program is stopped with a

% breakpoint. If you are in Command Mode. the characters that you have typed
on the current line are deleted. When using SHIFT C (CLEAR) to stop a

. program, hold the keys down until T1 Extended BASIC recognizes the

‘breakpoint.

i

At e

(N

e

: 13
4TI Extended HASIC



INTRODUCTION

CHAPTER

2

SHIFT @ (QUIT) returns the computer to the master title screen. When you
press SHIFT @ (QUIT), all data and program matertal are erased Sfrom the
computer's memory. If you are using a disk system, some of your data files
may be lost. Leave T1 Extended BASIC by entering BYE instead of using
EHIFT Q (QUIT).

ENTER indicates that you have finished typing the information on the current
line and are ready for the COmMPULter to process it.

Overview of
Tl Extended BASIC

e

This chapter briefly describes the TI Extendeq BASI‘C commandz;;e e
statements, and functions and suggests way,{s in which y(;n} canr isc then .
The first eight sections are Commands: Assignments an mpud. Co}ol::'- ;
Functions, Subroutines, and Subprograms: Sognd. Speechl. an o -le o
Sprites: Debugging: and Error Handling. The final section is an (;_xa m[;; e
the entry of a program showing the entry process and the use of so

T Extended BASIC elements.

. TIExtended BASIC

Tl Extended BASIC

15



OVERVIEW OF TI EXTENDED BASIC

COMMANDS

Commands tell the computer to perform a task immediately {that is. as soon
as you press ENTER). while statements are exccuted when a program is run.
In Tl Extended BASIC many commands can be used as statements, and
most statements can be used as commands. A list of all the commands,
statements, and functions is given in Appendix B, indicating the commands
that can be used as statements and the statements that can be used as
commands,

NEW
To remove a program from TI Extended BASIC to prepare the computer to
accept & new program, use the NEW command. Programs are also removed

from memory by the OLD command and the RUN command when used with
a file name.

NUMBER and RESEQUENCE

When you are entering a program, the compulter assigns line numbers for
you if vou enter the NUMBER vommand. If vou wish to resequence the line
numbers of a program after it is written, use the RESEQUENCE command.

LIST

To review the program that you have eniered, use the LIST command. The
program can be listed on the screen or to a peripheral device.

RUN
The RUN command instructs the computer io perform, or “execute,” a
program. The RUN command may be followed by a line number to have it

start program cxecution at a specific line, or by a device and fllename to load
and execute a program from a diskette.

TRACE, UNTRACE, BREAK, UNBRZAK, and CONTINUE
All of these commands are related to “debugging’ a program, which is
finding a problem that causes an error condition or an incorrect result. These

commands are discussed further in the "'Debugging and Error Handling”
section of this chaprer.

SAVE, OLD. MERGE, and DELETE

When you are finished working on a program, you may want to store it on a
casselte or diskette lor later use. The SAVE command. followed by the name
of the storage device and a program name, performs this lask for you. Then,
when you wish to reuse, lis;, edit, or change a program, vou can Ioad it into
memory with the QLD command. Ifa program has been saved using the
merge option, you can combine it with a program already in memory with
the MERGE command. When you have no further use for a program that has
been saved on diskette, you can remove it with the DELETE cammand.

— CHAPTER

SIZE i is left
The SIZE command Icts you determine how much memory space is left, so

can decide whether to continue to add program lines or end the program
zgg have a second program run from the first program with RUN used as a

statement.

BYE
when you have finished using Ti Extended BASIC. use the BYE command to

return to the master title screen.

Several of the commands (RUN, BREAK, UNBREAK. TRACE, UNTRACE.
and DELETE) can also be used as statements in programs.

ASSIGNMENTS AND INPUT ‘
This section discusses stalements in Tl Extended BASIC thatl assign values
to variables and enter data into programs.

LET and READ

If you know what values are to be assigned to vaﬁab!es. use LET or READ
statements. LET is used when you are assigning a fairly srr.lall num_ber of
values or are calculating values to be assigned. and READ is gsed. in
conjunction with DATA and RESTORE. when you are assigning numerous

values.

INPUT and LINPUT

When you want the user of the program to assign Yalues, it is customary to
glve a prompt that asks for the necessary information. INPUT allows you [?1
give a prompt and accept input. INPUT only allows the entry of vah'xes at the
bottom of the screen and cannot check to see that the dalz.i entered is Lhc_s
type of information the program expects. The final limitatlm} on INPUT is
that commas and quotation marks affect what is entered. Wllh LINPUT,
there is no editing of what is input, so commas and quota:ion mat.'ks can he
input. Both INPUT anc LINPUT may be used to input data from files on
cassetles and diskettes.

ACCEPT o
ACCEPT allows input ‘rom mosl screen positions. Using ACCEPT"ehmm'ate?
the necessity of entering data at the bottom of the screen and the “scrolling
of the INPUT statement. However, ACCEPT doesn't allow a prompt as the
INPUT statement does. Therefore, a PRINT or DISPLAY statement m'ust be
Included in the program to tell the user the type of entry that is‘reqmred.
ACCEPT can check the input to see that it is numeric, alphabetical. or
"specific characters. ACCEPT is for screen and keyboard use only.

16

Tl Extended BASIC

17
Tl Extended BASIC



OVERVIEW OF T| EXTENDED BASIC

CALL KEY and CALL JOYST

If pre’ssing a single key is all that the program user is required to do, then
CALL KEY can be used. For example, if a Y for “yes™ or N for "no" is the
required response, use the CALL KEY statement to accept the entry. CALL,
KEY does not display a character on the screen. It scans the keyboard or a
Portion of the keyboard to see if a key has been pressed. The major limitation
of CALL KEY is that only a single keystroke is accepted, The data is not
recorded as a character, but rather as the ASCII code for the character or as
some other code. (See Appendices C and J for a list of the codes used.) If you
wish to show the key that was pressed, you must use DISPLAY, PRINT,
CALL VCHAR, or CALL HCHAR, The input from a Wired Rernote Controller
can be used with CALL JOYST. As with CALL KEY, the data is not
displayed, and no scrolling takes place,

CALL CHARPAT, CALL COINC, CALL DISTANCE. CALL ERR. FOR-TO-

STEP. CALL GCHAR. CALL POSITION, NEXT, CALL SPGET, and CALL
VERSION

Each of these staternents assigns one or more values to a variable, CALL
CHARPAT assigns a value that speeifies the pattern of a character. CALL
COINC assigns a value to tell if sprites or a sprite and a point on the screen
are at or near the same location on the screen. CALL DISTANCE indicates
lhe distance between two Sprites or a sprite and a pont on the screen. CALL
ERR specifies the error that occurred and where it occurred. CALL GCHAR
reads what character is at a given screen location. CALL POSITION reads
where a sprite is on the screen. CALL SPGET assigns the coded value of

speech phrase to a variable (o be used with CALL SAY. CALL VERSION
indicates the version of BASIC in use.

FOR-TO-STEP and NEXT deserve special comment. The FOR-TO-STEF

statemeni sets the value of a variable so that it can be used to conirol the
number of times a loop is executed. Eac

value of the variable is changed. After the locp has been completed, the

variable has a value that is the first value outside the range specified in the
FOR-TO-STEP statement.

OUTPUT

This section discusses the T| Extended BASIC statements which are used to
output data during program execution. Usually, output consists of displaying

18 TIExtended BASIC

CHAPTER

T. DISPLAY, PRINT...USING, DISPLAY...USING, and IM:AGli_]‘,:)ISPLAY
PRIN t frequently used output statement‘s are PRINT and )
The two B t(clnrs (comma, semicolon, and colon} and the TAB functon
e pﬁ:‘lltt:ec%arjlﬁol the placement of information as it is output. PRINT

d. one line
i f the screen and scrolls them upward.
at the bottom o
displgyseit&]ﬂi‘-:h DISPLAY, you can display data almost anywhere on the

at a ume.

ters
without scrolling. DISPLAY can also clear the screen, erase charac
reen
(s:,:‘ a line, and cause a beep. N

USING and DISPLAY...USING are like PRINT and DIS P
l:’lmq’rmformat of the printed or displayed characters is diterr:m by e G
:Jh;ltN%eclau% possibly In conjunction with aIn;‘MA(E;P;;t& S‘musiNG

t control of the format. PRINT an T... ean

claui;lallifl“;ig}:(]?cuon with IMAGE, are the only output statements tha
];eosSseg to send data to an external device.

CALL HCHAR, CALL VCHAR. and CALL SPRITE

R place a character at any screen position
e HCHa?lR a: i;:tﬁltdlk;o\fi(;gl?talg or vertically. CALL SPRITE displ:}};f o
i 0ptl_9n ghz Screen. Sprites are graphics that can be moved sm;:)o dythe
e e t(i) o and changed in pattern. size, and color. CALL SPRl'It‘ l-::m
xgcsi;g:tei?ents related to sprites are discussed later In this chapter.

OLCR
ALL SCREEN and CALL C _
E‘laddition to displaying characters and iata rclm th:ze?scrt(e;:; [)ioSuC(;?EEcN setgs
een and the colors of the charac . L s
&e (s:z:'zrer? fc:)l;grscéALL COLOR specifies the foreground and backgroun
e .

colors of characters or the color of sprites.

CALL SOUND and CALL SAY

i f sounds is available. In
tputs sounds. A wide range o cor
gdAdI;tIi‘oSnOIéEELOgIY (possibly used with CALL SPGET) makes the compute

i r
speak if you have a Solid State Speech™ Synthesizer attached to you
computer.

FUNCTIONS, SUBROUTINES, AN]? S;Jl?ll::&(:z:(:a; orograrms for

IC prevides extensive fu ]
Ec;izndr?grggesl's aIr)ml chadracters. In addition, you may.construct your ow
~functiongs and write your own subprograms and subroutines.

Functions are TI Extended BASIC language elements thatfretu;gnz \;eriue.
ually d on parameters given to the function. Many func  dced
;mually ba‘se i in nature; others control or affect the result or output ptr duced
“lmmematma ents in wl‘;ich they occur. The TI Extended BASIC fulr;]c ;)[
::K%th;sstéte‘?m. CHRS, COS, EOF, EXP, INT, LEN. LOGBMA;‘);N Mm‘,c1 V,AL-
::POS! RECI RND. RPTS. SEGS, SGN, SIN, SQR. STRS, TAB, .

19
TI Extended BASIC




CHAPTER

—
OVERVIEW OF T| EXTENDED BASIC
You can also defipe N =
) your own functions using DEF. F i
within TI Extended B g - Functions are used d Functions
ASIC statements. User-Define
Built-in Functiong DEF is used to deﬁne your own functions. Functions up to one linc in length
The followi ) may be defined, with up to one argument, Longer functions may be
Functi ing briefly discusses each built-in function. constructed by having new definitions refer to previously defined functions.
ABgcnon Value Returned and Comments However, long functions might be more efficiently handled with subroutines
Joss Absolute value of a numeric expression or Subprograrms.
Th i ' . '
ox ;r:Sl;r;flr.c ASCII code of the first character of 2 string Subroutines
ATN Tri ’ GOSUB and ON...GOSUB are used to call subroutines. A subroutine is a
ol (‘;gonometric arctangent of a numerie expression given in series of statements designed to perform a task and is normally used in a
CHRS 1ans. program when it performs a task several times. By using GOSUB or
o Character that corresponds to an ASCIl code ON...GOSUB, you do not have to type the same lines of code several times,
S Trigonometric cosine of a n - The subroutine can use the values of any variable in the program and
EOF E Hmeric expression given in radtan 1
EXp nd-of file condition of a file, S change those values.
INT Exponential valye (€% of a numeric expression. Built-in Subprograms
LEN Integer value of a numeric expression. Built-in subprograms are TI Extended BASIC elements that perform special
Nunber of characters in a string expressj functions. They always are accessed with the CALL statement. The built-in
LOG Natural logarithm of 2 numeric o Presson. subprograms are CHAR, CHARPAT, CHARSET. CLEAR, COINC, COLOR,
MAX Larger of twa numeric - expression, DELSPRITE, DISTANCE, ERR, GCHAR, HCHAR, INIT, JOYST, KEY. LINK.
MIN Smaller of two Frpressions. LOAD. LOCATE. MAGNIFY, MOTION. PATTERN, PEEK. POSITION. SAY,
PI 7 with a val "‘f*me‘” Ic expressions, SCREEN, SOUND, SPGET, SPRITE. VCHAR, and VERSION
Wi vaiue of 3.141599
POS Position of the first oceurr 654. Built-in subprograms performm many different tasks, Some of the
another ence of one string expression within subprograms alfect the display and determine whart key has been pressed on
RE e keyboard.
RNE Current record Posilion in a file, the key
Random number from0to 1, Built-in .
RPTS String expression equal to Subprogram  Action and Comments
€Xpression concatenated iDZeI:E:;ber of copies of a string CLEAR Clears the screen.
SEGS Substring of a strin ) ' COLOR Specifies the colors of characters in character sets or the
that string and endigrlgxﬂisfioc:rf tarting at a specified point in : color of sprites.
SGN Sign of a numeric expression 4in number of characters, GCHAR Returns the ASCII code of the character at a screen position.
SIN Tri i . . ?HCHAR Displays a character on the screen and optionally repeats it
SOR Sqlug;;;o;aertri(f: sine of a numeric €xpression given in radians i horli)zoﬁtally. P yIep
ot ol anu i . - .
STRS String equivalen( fm ere exp{resswn_ #JOYST Returns values indicating the position of the Wired Remote
TAB Position for th ; 8.1 nurr_lcnc cxpression, f Controllers (optional).
PRINT USINC(; %Elxstr’lllgl;’m ull)e é’r int-list of PRINT, TKEY Returns a code indicating the key that has been pressed.,
, o
TAN Trigonometric angent of a " DISPLAY..USING. ' SCREEN Specifies the color of the sereen.
radians numeric expression given in L VCHAR Displays a character on the screen and opticnally repeats it
VAL Numer vertically
Te vaiue of a stri . ¥-
number, SLANg expression which represents a
20
21

Tl Fxtended BASIC

} T1 Extended BASIC




OVERVIEW OF Tl EXTENDED BASIC

Built-in subprograms can also define and control sprites.

Built-in

Subprogram  Action and Comments

CHAR - Specifies the pattern for a character used for a sprite or a
graphic.

CQOINC Determines if two sprites or a sprite and a point on the
screen are at or near the same location on the screen.

COLOR Specifies the color of a sprite or a character set.

DELSPRITE Deletes sprites.

DISTANCE Determines the distance between two sprites or a sprite and
a locatien.

LOCATE Specifies the position of a sprite.

MAGNIFY Changes the size of sprites.

MOTION Specifies the motion of a sprite.

PATTERN Specifies the character that defines a sprite.

POSITION Determines the position of a sprite.

SPRITE Defines sprites, specifying the character that defines them,

their color. their position, and their motion.

A third category of built-in TI Extended BASIC subprograms involves sound
and speech.

Built-in
Subprogram  Action and Cormments

SAY Causes the computer to speak words when used in
conjunction with the Solid State Speech™ Synthesizer.

Generates sounds.
Retrieves the codes that make speech.

SOUND
SPGET

Four built-in subprograms are only used with machine language
subprograrmns obtained from Texas Instruments or another source written in
TMS9900 machine language on another computer. Machine language
subprograms cannot be written on the TI-99/4 Home Computer. Detailed
instructions on the use of INIT, LINK, LOAD. and PEEK are provided with
machine language subprograms,

=

Finally there are some miscellanepus built-in subprograms.

Built-in
Subprogram  Action and Comments
CHARPAT Returns a value that identifies the pattern of a character.
CHARSET Resets characters 32 through 95 to their original pre-defined

patterns and colors,
ERR Returns values whaich give information about an error that
has occurred.

VERSION Specifies the version of BASIC that is being used.

User-Written Subprograms

You may write your own subprograms. They are a series of statements
designed to perform a task. They may be used in a program when you
expect to perform the task several times or to perform the same task in
several different programs. Using the MERGE option when you save a
subprogram allows it to be included in other programs.

When a subprogram is in a program, it must follow the main program. The
structure of a program must be as follows:
Start of Main Program

Subprogram Calls

The program will stop here
without a STOP or END
statement.

Subprograms are optional.

End of Main Program

Start of First Subprogram

Nothing may appear between
subprograms except remarks and
the END statement.

End of First Subprogram

Start of Second Subprogram

OCnly remarks and END may

End of Second Subprogram
appear after the subprograms.

End of Program

22 Tl Extended BASIC

Tl Extended BASIC 23



OVERVIEW OF Tl EXTENDED BASIC

Subprograms are called by the use of CALL followed by the subprogram’s
name and an optional list of parameters and values. The [irst line of a
subprogram is SUB. followed by the name of the subprogram and optionally
followed by a list of parameters.

The subprograms you write are not part of the main program. They cannot
use the values of variables in the main program, so any values that are
needed must be supplied by the parameter list in the CALL statement.
Variable names may be dupicates of those in the main program or other
subprograms without affecting the values of the variables in the main
program or other subprograms. Subprograms may call other subprograms,
but must not call themselves. either directly or indirecily.

SUBEND must be (he last statement In a subprogram. When that statement
is executed, control returns to the statement following the statement that
called the subprogram. Control may also be returned by the SUBEXIT
statement.

SOUND, SPEECH, AND COLOR

You may highlight important sections ol your programs's output through the
use of sounds, speech, and colors. This “"human engineering” makes the
program easier and more interesting (o use.

CALL SOUND

SOUND oulputs sounds. Tones may be output in lengths of from 001 to 4.25
seconds at volumes from 0 {loudest;) to 30 (sofiest). The [requency range is
from 110 {A below low C) 10 44,733 (above the range of human hearing). [n
addition, 8 noiscs are available. Up tc three tones and one noise may be
produced at the same time. Appendix D lists the frequencies that are used (o
produce the musical notes.

CALL SAY and CALL SPGET

SAY produces speech when a Texas Instruments Solid State Speech™
Synthesizer (sold separately) is attached to the console. You can choose
among 373 letters, numbers. words, and phrases (listed in Appendix L). In
addition. you can construct new words from old by combining words. For
example. SOME + THING produces “something” and THERE + FOUR
produces “‘Lherefore.”

SPGET is used to retrieve the speech codes that produce speech, These
patterns can then be used (o produce more natural speech and can be used
to change words. Because making new words is a complex process, it is not
discussed in this manual. However, suffixes can be added rather simply.
Appendix M tells how (o add the suffixes ING. S, and ED to any word. sa that
words such as ANSWERING, ANSWERS, ANSWERED, INSTRUCTING.
INSTRUCTS, and INSTRUCTED are included in the computer’s vocabulary.

o CHAPTER

CALL COLOR and CALL SCREEN

COLOR changes the colors of character sets and determines sprite colors.
SCREEN specifies the color of the screen as one of the sixteen colors
available on the T1-89/4 Home Computer.

SPRITES
Sprites are graphics that can be displayed and moved on the screen. One
advantage that sprites have over other characters is that they can be at any
of 49,152 positions of 192 rows and 256 columns rather than one of the 768
itions of 24 rows and 32 columns used by statements such as CALL
VCHAR and CALL HCHAR. Because of this greater resolution, sprites can
move more smoothly than characters. Alsc, once set in motion, sprites can
conlinue to move without further program control.

CALL SPRITE

CALL SPRITE defines sprites. This subprogram specifies the character
pattern that sprites use, their color. their position, and. opticnally, their
motion.

CALL CHAR and CALL MAGNIFY

Although you may use any of the predefined characiers. numbers 32
through 95, as a sprite, CALL CHAR is generally used to define a new
pattern for a sprite. Up to four 8 by 8 dot characters may be used to form a
sprite. The MAGNIFY subprogram controls the resolution and size of sprites.

CALL COLOR, CALL LOCATE, CALL PATTERN. and CALL MOTION
Once a sprite is set up. it can be altered by various subprograms. COLOR
changes the color of a sprite. LOCATE moves (he sprite to a new position.
PATTERN changes the character that defines a sprite, MOTION alters the
motion of a sprite.

CALL COINC, CALL DISTANCE, and CALL POSITION

Three subprograms prov:.de information about sprites while a program is
running. COINC returns a value that indicates if sprites or a sprite and a
point on the screen are ar or near the same place on the screen. DISTANCE
returns a value that specifies the distance between iwo sprites or a sprite and
a point on the screen. POSITION returns values that indicate the position of a
Sprite.

CALL DELSPRITE

CALL DELSPRITE allows you (o delete sprites. If you prefer. you may “hide”
Sprites by locating them off the bottom of the screen.

24 T1Extended BASIC

[ —

T Extended BASIC »



OVERVIEW OF TI EXTENDED BASIC

CHAPTER

DEBUGGING
Debugging a program is finding logical or typing errors in a program.
BREAK. CONTINUE, TRACE, ON BREAK. UNBREAK. UNTRACE, and
SHIFT C (CLEAR) are mosi often used in debugging.

BREAK, ON BREAK. CONTINUE, and UNBREAK

BREAK causes the computer {0 stop program execution so that you can print
the values of variables or change their values, BREAK also resets characters
to their standard colors (black on transparentl, restores the standard screen
color (cyan), restores the standard characters (32-95) to their standard
representation. and deletes sprites.

ON BREAK tells the computer what to do if a break occurs. You can use this
statement to tell the computer to ignore breakpoints that you have entered in
the program. CONTINUE causes the computer to continue program
execution after a breakpoint. UNBREAK cancels any breakpoints set with
BREAK. Note: If you have put ON BREAK CONTINUE, the computer will not
stop when you press SHIFT ¢ (CLEAR).

TRACE and UNTRACE

TRACE causes the computer to display each line number before the
statement(s) on that line is (are) executed. Using this statement allows you to
follow the sequence of operation of a program. UNTRACE cancels the
operation of TRACE.

ERROR HANDLING
You may include statements in a program to handle errors thal occur while
the program is running.

CALL ERR, ON ERROR, ON WARNING, and RETURN

CALL ERR returns information indicating where an error has occured and
what the error is. Appendix N lists the error codes that are returned. ON
ERROR specifies what the computer does if an error occurs. ON WARNING
specifies what the computer does if a condition arises that would normally
cause a warning message to be issued. RETURN is used with ON ERROR in
addition to its use with GOSUB. It repeats execution of the statement that
caused the error, returns to he statement following the one that caused the
error, or transfers control to some other part of the program that avoids the
error that has occurred.

PROGRAM ENTRY EXAMPLE

Now that you've had a brief overview of the features of Tl Exiended BASIC.
ou may enjoy reviewing or even entering and experimenting with a

demonstration program. This section demonstrates a number of the usefut

features of TI Extended BASIC. By following the suggestions in this scction,

you can learn some usclul shortcuts in the entry process.

This program aliows you to play a game called Codebreaker. In playing it,

ou determine the lengih of a code (1 to 8 digits). Then you decide the range
of digits that may be included in the code {(up to ten). The computer selects
the digits in the code without repeating digits. You then guess what the
digits are and their sequence. After each guess, the computer tells you how
many digits you guessed correctly and how many are in the correct place. (If
you repeat a digii in your guess, it is counted as right each (ime it appears.)
Using this information. you guess again. You win when vou guess all the
digits correctly and place them in the proper sequence,

For example, suppose vou've chosen to play the game using four digits with
each digit being any one of nine numbers {0, 1, 2, 3. 4. 5. 6. 7, or 8}). The
code the compuier chooses might be 0743, which you are trying to break.
Here is a possible sequence of guesses.

EXPLANATION OF THE

GUESS RIGHT PLACE COMPUTER'S RESPONSE
0000 4 1 0 is right four times, once in the right place.
1234 2 0 3 and 4 are right, but not in the right place.
5678 1 0 7 is right, but not in the right place.
2348 2 1 3 and 4 are right, and 4 is in the righ: place,
0347 4 2 All right, O and 4 in the right place.
3047 4 1 All right, 4 in the right place
0734 4 2 Al right, 0and 7 in the right place.
0743 4 4 Al right, all in the right place. You win.

To begin entering the example, turn on any peripheral devices you have
eonnecied to the computer. Insert the TI Extended BASIC Command Module
and turn on the computer. Press any key to go to the master sclection list,
Press 3 (o select T1 Extended BASIC.

In the following. the charzcters vou type and the keys you press are

UNDERLINED.

[ -

26 Tl Extended BASIC

1?& Extended BASIC 27



——————

OVERVIEW OF TI| EXTENDED BASIC

CHAPTER

CODEBREAKER FProgram Entry

COMMENTS DISPLAY

#* READY *
Automatically numbers the program >NUM ENTER
lines.
Title and language. >100 REM CODEBREAKER XBASIC ENTER
Reserves room for the codes and >110 DIM CODE$(8),GUESSE(8) ENTER
guesses.
Makes the codes random. >120 RANDOMIZE ENTER
Clears the screen, beeps, and puts  >130 DISPLAY AT(11,9)BEEP ERA
the title CODEBREAKER on the 11th SE ALL:"‘CODEBREAKER" ENTER
row starting in the 9th column.
REDO repeats whatever was done >140 SHIFTR
before ENTER was last pressed. Using
the edit keys [SHIFT G (INSERT),
SHIFT F (DELETE), and the arrows],
change line 130 to: 140 DISPLAY
AT(19,1)BEEP:"" NUMBER OF
CODES? (1-8)".
Beeps and displays NUMBER OF 140 DISPLAY AT(19,1)BEEP: NU
CODES? (1-8) on the 19th row MBER 07 CODES? (1-8)" ENTER
starting at the first column,
Press SHIFT R (REDQO) again. Now > SHIFTR
change line 140 to: 150 DISPLAY
AT(21,6)BEEP:“DIGITS EACH
CODE?",
Beeps and displays DIGITS EACH 150 DISPLAY AT(21,6)BEEP:"DI
CODE? on the 21st row starting at GITS EACH CODE?" ENTER
the 6th column.
Accepts into CODES an entry on the >160 ACCEPT AT(19,24)VALIDATE
19th line, 24th column. allowing DIGIT): CODES ENTER
only digits to be entered.
Change line 160 to: 170 ACCEPT > SHIFTR
AT(21,24) VALIDATE(DIGIT):
DIGITS.
Accepts into DIGITS an entry on the 170 ACCEPT AT(21,24)VALIDATE
21st line, 24th column, allowing only (DIGIT}:DIGITS ENTER

digits to be entered.

28 TI Exlended BASIC

>LIST
100 REM CODEBREAKER XBASIC
110 DIM CODE${8),GUESS}{&)
120 RANDOMIZE
130 DISPLAY AT(11,9!BEEP ERA
SE 4LL:"CODLBREAKER"
140 DISPLAY AT{19,1)BEEP:-NU
MBER OF CODES? (1-B)"
150 DISPLAY AT{21,6)BEEP:"DI
GITS EACH CODE?"
160 ACCEPT AT(19,24)VALIDATE
(DIGIT):CODES
170 ACCEPT AT(21,24)VALIDATE
(DIGIT):DIGITS

Displays the program as it is
currently entered.

Runs the program. >RUN

Screen clears. then this appears:
CODEBREAKER
NUMBER OF CODES? (1-3) M

DIGITS EACH CODzZ?

Enter anything except a digit. The computer beeps and does not accept it.

Enter 4. The cursor moves down to the second prompt. Enter 10. The

program ends and you can continue entry.

* READY *

>NUM 180

>180 IF CODES>DIGITS THEN DI3
PLAY AT(24,2)BEEP: "NO MORE €

ODES THAN DIGITS'::GOTO 140

Numbers lines starting with 180.
Checks Lo see that there will be
enough digits for the number of
codes. If CODES is less than or equal
to DIGITS. control passes to the next
line. If CODES is greater than
DIGITS, the message NO MORE
CODES THAN DIGITS is displayed
on the last line of the screen. and
eontrol is transferred to line 160

again.

ENTER

——

TI Extended BASIC

29



OVERVIEW OF TI EXTENDED BASIC

CHAPTER

Starts the loop to choose the codes.  >190 FCR_A=1 TG CODES |GHOCSE

The words afier the exclamation CODES ENTER
paint are a comment.
Chooses codes at random.

>200 CODE$(A}=STR$(INT(RND*DI

Completes inside loop.

Completes outside loop.

Displays the number of digits thal
are correct.

>370 NEXT F ENTER
>380 NEXT E ENTER
>390 DISPLAY AT(ROW,14):RIGHT ENTER

GITS)) ENTER  pEDO line 390 o be: 400 DISPLAY ~ >400 SHIFT R
Starts the lbop to prevent duplicate  >210 FCR B=0 T0O A-1 !CHECK FO AT (ROW.22):PLACE.
codes. R DUPLICATES ENTER  pisplays the number of digits that 400 DISPLAY AT(ROW,22) :PLACE ENTER
Checks for duplicates. Chooses a new >220 IF CODE$(A)=CODE$(B) THE are in the correct place.
code if there is a duplicate. N 200 ENTER Numbers lines starting at 410. >NUK 410 ENTER
Finishes duplicate check loop. >230 NEXT B ENTER Checks o sec if the code has been  >410 IF PLACE<>CODES THEN ROW
Finishes code choice loop. >240 NEXT A ENTER solved. If it has, goes to the next line. .goy+1::IF ROW>22 THEN 470 E
Sets a variable to keep track of »250 ROW=2 ENTER If it has not, adds one to the row. LSE 280 ENTER
where information is displayed on Then if the row is more than 22, -
the screer. goes to line 470 and gives the
Clears the screen and displays a »>260 DISPLAY AT(1,1)}ERASE ALL solution. Otherwise, returns to line
column heading on the top line. :"GUESS RIGHT PLACE" ENTER 280 to accept another guess,
REDQ line 260 so it reads: 270 >270 SHIFTR Displays the win message with the  >420 DISPLAY AT(23,1)BEEP: YO
DISPLAY AT(24.3):"ENTER 'X" FOR number of guesses at the 23rd row  y yIN WITH";ROW-1; GUESSES.” ENTER
SOLUTION™. starting at the first column.
Displays an instruction at the bottorn 270 DISPLAY AT{24,3): ENTER REDO line 420 (0 be: 430 DISPLAY  >430 SHIFTR
of the screen. 'X' FOR SOLUTION" ENTER AT(24.1) BEEP:"PLAY AGAIN? (Y/N)
Numbers lines starting at 280. >NUM 280 ENTER Y
Accepts the guess at the proper row. >280 ACCEPT AT(ROW,1):C$ ENTER  Displays the prompt PLAY AGAIN? 430 DISPLAY AT(24,1)BEEP: PL
Checks for giving up or reseting. 2290 IF C$="X" THEN 470 !GIVE (YIN} Y at the 24th row siarting at AY AGAIN? {Y/N) Y" ENTER

UP OR RESET ENTER the first column.
Begins loop to break up the guess to >300 FOR D=1 TO CODES !BREAK Numbers lines starting at 440. >NUM 440 ENTER
check it for accuracy. UP GUESS ENTER Accepts an entry into X$ on the 24th >440 ACCEPT AT(24,19)SIZE(-1)
Separates guess into individual >310 GUESS$(D)=SEG$(C$,D,1)  ENTER row, 19th column. Does not remove  BEE> YALIDATE(*'YN"):X$ ENTER
digits. any character that is already there
Completes loop to separate guess. >320 NEXT D ENTER {In this case, a Y from the DISPLAY
Sets RIGHT and PLACE to zero. >330 RIGHT,PLACE=0 ENTER  Mtatement in line 430). accepts only
Begins outside loop to check the >340 FCR E=1 TO CODES !CHECK one character. beeps, and accepts
guess against the code. GUESS FOR_CORRECTNESS ENTER  ®nly Y or N. Pressing ENTER at this
Begins inside loop to check guess.  >350 FOR F=1 TO CODES ENTER  Joint when the program is running
I a guess doesn’t match a code. goes »360 IF CODE$({E}=GUESS$(F) TH :’zﬂfirgés the Y that was displayed by
to the next ljine. If a guess maiches a - .. . ~ine 430.
code. adds (;i'le to thegnumber iiiig:i;iigiil :IF EoF THE ENTER lfY Is entered, returns to line 190 >450 IF X§="Y" THEN 190 ENTER
correct. Then if the guess is in the -and chooses a new code for another
correct place, adds one to the - game.
number in the correct place. :Stops the program. >460 STOP ENTER

31

30 T1 Extended BASIC i1 Extended BASIC



OVERVIEW OF Tl EXTENDED BASIC

v

Displays the message THE CODE 1S >470 DISPLAY AT{(23,1)BEEP:"TH
at the 23rd row. 1st colummn. E CODE IS" !'LOSE, GIVE YP, O

R RESET ENTER
Begins a loop to display the digits.  >480 FOR G=1 TQ CODES ENTER
Displays the digits. >430 DISPLAY AT(23,12+G):CODE

$(G) ENTER
Finishes the loop. »500 NEXT G ENTER
Leave the number mode. »510 ENTER
Press DOWN ARROW as if to edit >430 DOWN ARROW
line 430 sc vou can use SHIFT R 430 DISPLAY AT(24,1)BEEP:'"PL
{REDO). AY AGAIN? (Y/N) Y- ENTER
Press REDO. Line 510 is a duplicate > SHIFTR
ol line 430, so change the line
number to 510.
Displays the prompt PLAY AGAIN? 510 DISPLAY AT(24,1)BEEP:"PL
(Y/N1'Y at the 24th row starting at &Y AGAIN? (Y/N) Y° ENTER
the 1st column.
Press DOWN ARROW as if to edit >440 DOWN ARROW
line 440 so you can use SHIFT R 440 ACCEPT AT{24,19)SIZE(-1)
(REDQ). BEEP VALIDATE("YN"):X$ ENTER
Press REDO. Line 520 is a duplicate > SHIFTR
of line 440. so change the line
number to 520.
Accepts an entry into XS on the 24th >520 ACCEPT AT{24,19)SIZE(-1)
row, 19th column. Does not remove BEEP VALIDATE(“YN"):X3 ENTER
any character that is already
displayed (in this case a Y from the
DISPLAY statement in line 510),
accepls only one character, beeps.,
and accepts only Y or N, Pressing
ENTER at this point when the
program is running confirms the Y
that was displayed by line 510,
If Y is entered, returns to tine 130, >530 IF X§="¥" THEN 130 ENTER

allows changing the number of digits
ina code and the number of
acceplable digits, and starts a new
game.

32 TI Extended BASIC

CHAPTE

R

Before running a program, you should proofread it Here is a list of the entire
program for you to check against your program list.

100 REM CODEBREAKZR XBASIC

110 DIM CODE$(8),GUESS$(8)

120 RANDOMIZE

130 DISPLAY AT(11,9)BEEP ERA

8E ALL:“CODEBREAKER™

140 DISPLAY AT(19,1)BEEP:"NU

MBER OF CODES? (1-8}"

150 DISPLAY AT(21,6)BEEP. DI

GITS EACH CODE?™

160 ACCEPT AT(19,24)VALIDATE

{DIGIT) :CODES

170 ACCEPT AT(21,24)VALIDATE

{DIGIT) :DIGITS

180 IF CODES>DIGITS THEN DIS

PLAY AT(24,2)BEEP: NO MCRE C

ODES THAN DIGITS"::GOTQ 150

190 FOR A=1 TQ COZES !CHOJSE

CODES

200 CODE$(A)=STHE(INT(RND*DI
GITS))

210 FOR B=0 TO A-1 !NO DUPLI
CATES

220 IF CODE$(A)=CODE$(B) THE
N 200

230 NEXT B

240 NEXT &

250 ROW=2

260 DISPLAY AT{1,1)ERASE ALL
1 “GUESS RIGHT  PLACE"
270 DISPLAY AT(24,3):"ENTER

'X' FOR SOLUTION"

280 ACCEPT AT{ROW,1):C$

290 IF C3=X" THEN 470 !GIVE
P OR RESET

300 FOR D=1 TO CCDES !BREAK
UP GUESS

Tl Extended BASIC

33



OVERVIEW OF TI EXTENDED BASIC

3106 GUESS$(D)=SEG${C$,D,1)
320 NEXT D

330 RIGHT,PLACE=0

340 FOR E=1 TQ CODES {CHECK
GUESS

350 FOR F=1 TO CODES

360 IF CODE$ E)=GUESS$(F) TH
EN RIGHT=RIGHT+1::IF E=F THE
N PLACE=PLACE+1

370 NEXT F

380 NEXT E

390 DISPLAY AT{ROW,14) :RIGHT
400 DISPLAY AT(ROW,22):PLACE
410 IF PLACE<>CODES THEN ROW
=ROW+1::IF ROW>22 THEN 470 E
LSE 280

420 DISPLAY AT{23,1)BEEP:~YC
U WIN WITH ;ROW-1; GUESSES."
430 DISPLAY AT(24,1)BEEP:"PL
AY AGAIN? (¥/N) Y"

440 ACCEPT AT(24,19)SIZE(-1)
BEEP VALIDATE(“YN"):X$

450 IF X$="Y" THEN 190

460 STOP

470 DISPLAY AT(23,1)BEEP:“TH
E CODE IS~ !LOSE, GIVE UP, O
R RESET

480 FOR G=1 T0O CODES

490 DISPLAY AT(23,12+G):CODE
$(G)

500 NEXT G

510 DISPLAY 2T(24,1)BEEP:"PL
AY ACAIN? (Y/N) Y-

520 ACCEPT AT{24,19)SIZE(-1)
BEEP VALIDATE({"YN"):%§

530 IF X$="Y" THEN 1:0

34

T! Extended BASIC

T CHAPTER

Now run the program by typing RUN and pressing ENTER. Choose 4 codes
with 10 digits (0, 1. 2, 3. 4,5, 6, 7, 8, and 9) possible in each code. Guessing
the code in six tries is excellent. Finding it in eight is very good.

If you wish to use the program again. save it on diskette or cassette. To save
it on cassette, make sure the cassette player is connected. Then enter SAVE
CS1 and fellow the instructions that appear on the screen,

To save the program on diskette, enter SAVE DSK1.filename with whatever
filename you wish to use to save il, such as CODEBREAK.

After saving the program, or if you do not wish to save the program, enter
NEW. The program is removed and you may enter another program.

If you have saved the program, you can easily reload it into the computer’s
memory for reuse or further ediling. Reload the program from a cassette by
entering OLD CS1 and then foliowing the instructions that appear on the
screen. Reload the program from diskette by entering OLD DSK] filenarne
using whatever filename you used to save it.

When you have finished using Tl Extended BASIC, enier BYE to return to
the master title screen.

£ Extended BASIC

35



- CHAPTER

Tl Extended BASIC
Conventions

e ———— L
e P —

This chapter discusses the format that Tl Extended BASIC programs must
take and the ways in which TI Extended BASIC functicns.

36

Tl Extended BASIC

TI Extended BASIC 37



TI EXTENDED BASIC CONVENTIONS

RUNNING A PROGRAM ON POWERUP

If a program named LOAD is on the diskette in disk drive 1 when TI
Extended BASIC is chosen. that program is loaded and run. The effect is the
same as if you had entered RUN “"DSK1.LOAD". If the program does not
exist, there is a momentary delay while TI Extended BASIC loocks for it.

FILES

Files are groups of data put on external devices, The most common files are
on casselttes or diskettes, but daia sent through external devices such as the
RS$232 Interface and the optional thermal printer are also considered to be
files by TI Extended BASIC.

LINE NUMBERS

Line numbers are required in TI Extended BASIC programs. Line numbers
specify the order in which lires are executed and are used to identify what
lines to execute next when using IF-THEN-ELSE, GOTO, GOSUB, ON
ERROR, ON...GOTO, and ON...GOSUB. Line numbers may also be used by
BREAK. LIST. NUM. RESTORE, RETURN, and RUN. Line numbers may be
any integer from 1 through 32767,

The computer automatically generales line numbers if you issue the NUM
command. When not followed by a line number, it provides line numbers
starting at 100, incrementing each subsequent line by 10. You may
resequence Hne numbers with the RES command.

LINES

Lines may be up to 140 characters long, including the line number and
spaces. If you have reached ihe end of a line, additional characters you enter
replace the 140th character, [t is possible 10 make a line longer than 140
characters in the Edit Mode by the use of SHIFT G (INSERT).

SPECIAL SYMBOLS

Special symbols separate statements and remarks on the same line. A line of
TI Extended BASIC consists of a line number, one or more T1 Extended
BASIC statermnents, and an optional remark. For example:

100 FOR A =1 TO 100::PRINT A;SQR|A):NEXT A IPRINT SQUARE ROOTS

The statement separator symbol, a double colon (::). is used to separate
statements on the same line. The tail remark symbol. an exclamalion point
(1). is used to separale an explanatory remark from the rest of the line.
Remarks are not executed when the program is run.

= CHAPTER

SPACES
Spaces are required in T! Extended BASIC betweern the elements that make
up statements to enable the computer to distinguish variable names from TI
Extended BASIC elemen:s. However. spaces are not required before or alter
relational symbols or before or after the tal remark symbol or the statement
separator symbol. You may insert cxtra spaces when inputt.ng commands
and statements. but they are deleted by Tl Extended BASIC. When listing
grams. T1 Extended BASIC may add spaces around the tail remark
symbol and statement separator symbol.

NUMERIC CONSTANTS

Numeric constants may be entered with any number of digits. However. they
are rounded to 13 or 14 digits by the computer due to the internal storage
method used by the compuier, and are normally displayed as a maximum of
10 digits. For extremely large or small numbers, it is usually more
convenient to use scientific notation to enter numbers. The computer
normally uses scientific notation when printing very large or small numbers.

In scientific notation, a number is given as a mantissa (a number with one
place to the left of the decimal point) times 10 raised to an integer power. 15
is expressed in scientific notation as 1.5x 10!, 150 is expressed as 1.5x 10%;
- 1,500 is expressed as - 1.5 x 10% 156,789,000,000,000 is expressed as
1.66789 x 10°*; and 0.156789 is expressed as 1.56789x 10-!. In T1 Extended
BASIC, The ' x 10" is represented by “'E'. Thus 1.5 x 10 becomes 1.5E3.

Numeric constants are d=fined in the range - 9.9999999999999E127 to
-1E-128, 0, and 1E-128 to 9.99939999389999E127. If the exponent of a
calculated number is greater than 99,,then ** is normally printed or
displayed as the power. The entire ex&onent is kept internaly and can be
displayed with a USING clause in a PRINT or DISPLAY stalement.

STRING CONSTANTS

jén’ing constants in TI Extended BASIC can be up to one input line long. If
the string is enclosed in quotation marks, quotation marks :n the string are
yepresented by double quotation marks.

8

VARIABLES

‘Wariables in T1 Extendec¢ BASIC may consist of one to 15 characters, The

Mrst character of a variable must be a letter of the alphabet. the at symbol
(ﬁ} or an underline (__). Subsequent characters may be thcse symbols plus
@ny of the digits. The last character of a string variable must always be a

'anllar sign (8). Variables are either scalar or arrays with up to seven

dimensions.

[ —

*T1 Extended BASIC 39

38 TI Extended BASIC



TI EXTENDED BASIC CONVENTIONS

e CHAPTER

(e

Certain words are reserved for use by Tl Extended BASIC. They are the
commands, statements, funclions. and operators that make up the language.
These words may not be used as a variable name, but they may make up
part of a variable name. The following is a complete list of the words reserved

for TI Extended BASIC.

ABS
ACCEPT
ALL
AND
APPEND
ASC

AT

ATN
BASE
BEEP
BREAK
BYE
CALL
CHRS
CLOSE
CON
CONTINUE
cos
DATA
DEF
DELETE
DIGIT
DIM
DISPLAY
ELSE
END

EOF
ERASE
ERROR
EXP
FIXED
FOR
GO
GOsUB
GOTO
IF
IMAGE
INPUT
INT
INTERNAL
LEN
LET
LINPUT
LIST
LOG
MAX
MERGE
MIN
NEW
NEXT
NOT
NUM

NUMBER
NUMERIC
OLD

ON

OPEN
OPTION

OR

OUTPUT
PERMANENT
Pl

POS

PRINT
RANDOMIZE
READ

REC
RELATIVE
REM

RES
RESEQUENCE
RESTORE
RETURN
RND

RPTS

RUN

SAVE

SEGS

The following are examples of valid variable names:
Numeric: X. A9, ALPHA. BASE PAY V(3). T(X,Y.Z.Q.A.R.P6).

TABLE{Q37.M/4)

String: §8, YZ28. NAMES, Q58(X.7.L/2). ADDRESSS(4)

SEQUENTIAL
SGN

SIN

SIZE
SQR
STEP
STOP
STRS
SUB
SUBEND
SUBEXIT
TAB

TAN
THEN

TO
TRACE
UALPHA
UNBREAK
UNTRACE
UPDATE
USING
VAL
VALIDATE
VARIABLE
WARNING
XOR

40

11 Extended BASIC

§—

- NUMERIC EXPRESSIONS
Numeric expressions are construcied from numeric constants. numeric
‘variables, and functions using the arithmetic operators for addition (+},
subtraction (-) multiplication (*), division {/), and exponentiation (A ).

-The minus sign ( —) can be used rither to indicate subtracuon or as a unary
“minus. As a unary minus, it reverses the sign of what follows it. For
_examplf:. -3A2is equal to -9 as it is taken to mean - (3A2).

-'.The normal hierarchy for evaluating a numeric expression s exponentiation,
followed by multiplication and division, and then by additicn and
tsubtractlon However, any part of a numeric expression that is enclosed in
parentheses is evaluated first. The following shows the effect of parentheses
“on determining the value of an expression:

Final

intermediate Results Value
\4+2/\2/2 6 4+4/2-6 44+2-6 0
i{4+2)/\2/2 6 BA2/2 -6 36/12-6 12
‘4+2A2/(2 6) 1+4/4-4) 41 3

‘a'rRmG EXPRESSIONS
5tr1ng expressions are constructed from string variables, string constants,

d function references using the operation for concatenation (&) to combine
!ﬁéttmgs If a constructed string exceeds a length of 255 characters, the exira
»!ﬁ:harauus on the right are truncated and a warning message is issued. The
followmg is an example of concalenation:

100 A$="HI"&* THERE!"

¥ "

A$- ‘HI"&* THERE!"" sets AS equal to "HI THERE!".

(RELATIONAL EXPRESSIONS

-;Re]atlona] expressions are most often used in the IF-THEN-ELSE statement,

»\but may be used anywhere that numeric expressions are allowed. A

\ﬁrclatlona] expression has a value of -1 if it is true and a value of O if it is

Jfalse Relational operations are performed, from lelt 1o right, after all

%j:!n'l‘thmetic operations are completed and before string concatenation (the
persand operator). The relational expressions are:

thua] to[=)

ILess than (<)

Greater than (>)
i4

Not equal to (< >}
Less than or equal to (< =)
Greater lhan or equal to (> =)

" Tl Extended BASIC 41



TI EXTENDED BASIC CONVENTIONS

The following examples illustrate the use of relational expressions:

IF X<Y THEN 200 EL.SE GOSUB >100 IF X<Y THEN 200 ELSE GO
420 next executes line 200 if X is SUB 420

less than Y. If X is greater than or

equal to Y, then the statemnent

GOSUB 420 is executed,

IFL(C)=12 THEN C=S+ 1 ELSE >100 IF L{C)=12 THEN C=S+1 E
COUNT=COUNT + 1:GOTO 140 sets  LSE COUNT=COUNT+1::GOTO 140
C equal to 5 plus 1 { L{C) equals 12.

If L(C) is not equal to 12, then

COUNT is set equal to COUNT pius 1

and line 140 is executed next.

A=2<Bses Aequalto — 1 asitis
true that 2 is less than 5.

> 100 A=2<5

PRINT "THIS" ="THAT" prints 0 as >100 PRINT ~THIS'="THAT"
it i8 not true that “"THIS" is equal to
“THAT"

A=B=7scts Aequalto -1 il Bis
equal to 7, and to 0 if B is not equal
to 7. There is no effect on B. Note
that this is not the same as the usual
arithmetical meaning of A=B=7.

>100 A=B=7

LOGICAL EXPRESSIONS

Logical expressions are used with relational expressions. The logical
operators are AND, OR. NOT. and XOR. If true, logical expressions are given
a value of - 1. If falsc. they are given a value of O. The order of precedence
for logical expressions, frem aighest o lowest, is NOT, XOR, AND. and OR.

A logical expression using AND is true if both its left and right clauses are
true,

A logical expression using OR is true if either its left clause is true, its right
clause is true, or hoth its left and right clauses are truc.

A logical expression using NOT is true il the clause following it is not true.

A logical expression using XOR (exclusive or) is true if either its lclt or its
right clause is true, but not both its left and right clauses are true.

*-200 passes control to line 200 if

42 TI Extended BASIC

R ‘v-“ﬂ?'f: .¢,».:1.._a e Az_,a

T CHAPTER

—_—

The following examples illustrate the use of logical expressions:
IF 3<4 AND5<6 THEN L=7 sets L >100 IF 3<4 AND 5<6 THEN L=7
equal to 7 since 3 is less than 4 and
5 is less than 6.
IF 3<4 AND 5>6 THEN L. =7 does
not set L equal to 7 because 3 is less
than 4, but 5 is not greater than 6.
IF 3<40R5>6 THEN L=7 sets L
equal to 7 because 3 is less than 4.
IF 3<4 XOR5>6 THEN L =7 sets L. >100 IF 3<4 XOR 5>6 THEN L=7
equal to 7 because 3 is less than 4
and 5 is not greater than 6.
IF 3<4 XOR 5<6 THEN L =7 does
not set L equal to 7 because 3 is less
than 4 and 5 is less than 6.
IF NOT 3=4 THEN L =7 sets L. equal >100 IF NOT 3=4 TEEN L=7
to 7 because 3 is not equal to 4.
IF NOT 3=4 AND (NOT 6=5 XOR
2=2) THEN 200 does not pass
control to line 200 because while it is
true that 3 is not equal {0 4. it Is true
" that both 6 is not equalto 5 and 2 is
_equal Lo 2. so0 the clause in
. parentheses is not truc.
IF (A OR B} AND (C XOR D) THEN

>100 IF 3<4 AND 5>6 THEN L=7

>100 IF 3<4 OR 5>6 THEN L=7

>100 IF 3<4 XOR 5«6 THEN L=7

>10C IF NCT 3=4 AND (NOT 6=5
XOR 2=2) THEN 200

>100 IF (A CR B} AND (C XOR
D) THEN 200

"efther A or B or both A and B are

‘true (equal to ~ 1), and C or D, but

; not both C and D are true {equal to

-n

; The logical operators can also be used directly an numbers. They convert the

e

£'numbers to binary notation. perform the designated operalion on a bit level.

‘nnd then convert the result back to decimal representation. A more detailed
sidiscussion of the use of logical operators with numbers can be found in a

fmathematlcs or engineering text dealing with logic.

by 'I‘he mumbers must be from - 32.768 to 32,767, represented in binary

»; 'notation as from 1000000000000000 to 0111111:11111111, with negative

Z'numbers given in 2's complement form signified by a 1 in the most

£ significant bit. In binary notation. each place is an additional power of 2

rather than an additional power ol 10 as in decimal notation. The following
‘'shows numbers in both decimal and binary notation,

" T Extended BASIC 43



TI EXTENDED BASIC CONVENTIONS

DECIMAL BINARY
PLACE PLACE
- 100 10 1 - 16384 B192 4096 2048 1024 512 256 128 64 32 16 4 2 |
o G 1 0 0 0 5] 0 o [i] g 0 0 0 0 0 0 0
0 0 8 & 0 0 [¢] 0 o ] 0 0o 0 0 0 D 1 1 0
0 2 5 0 a 0 [+ 0 0 0 i} 0 0 ¢ 1 1 0 0 1
- o 1L 3 1 1 1 1 ] 1 1 1 1 1 11 0 0 1 1
The above is the equivalent to
1, = 0000000000000001, = 1, 25, = 000000000011001, = 11001,

6,; = 0000000000000110, = 110; -13,4 1111111111110011,

AND places a 1 in the corresponding binary position if there is a 1 in both
the number preceeding and following it. Otherwise it places a zero.

OR places a 1 in the corresponding binary position if there is a 1 in either the
number preceeding it or following it or both. Otherwise il places a zero.

XOR places a 1 in the corresponding binary paosition if there is a 1 in either
the number preceeding it or following it but not both. Otherwise it places a
ZET0.

NOT places a 1 in the corresponding binary position if there is a zero in the
number following it. Otherwise it places a zero.

The following illusirate the result of the logical operators when used on
numbers.

DECIMAL BINARY DFECIMAL BINARY
A 1 OVOGIGOOD000000 1 A: 1 0000000000000 ]
B: 2 GA0OGHOOR00O0010 B: 3 OU0COUOOGOC000 T |
A ANDB 9] OOODCD0R00000000 A ANDB: | QOOOOONOGO0O000T
A 2] QOOCOD0000000 1 10 A 47 0Q0000000010111L
B: 5} 0000000000101 B: 62 000000000G111110
AAND B 4 QO00GOORH0000 100 A AND B: 46 0000000000101 110
DECIMAL BINARY DECIMAL BINARY
A 1 QOO0OCGOI000000 L Al 1 0000000000000 L
B: 2 OOOOONGOHINOON 10 B. 3 DOOOOVO0O00CO0 1 1
A OR B 3 OOCOOOCOGIGON0 T L A QR B 3 0000000000000 1
A 6 0000000000301 10 A: 47 000000000010111 1
B: ) O0030000CO0B00 101 B: 62 000O000000111110
AORB 7 0O000000COOGO L L A OR B 63 000C0OD000111111
DECIMAL BINARY DECIMAL BINARY
A: 1 OQUODCOOCOO00DMC | A 1 QOOGOGHOBOONN0G 1
B: 2 OGO00000000000 10 B: 3 QCOOOTOO000001 1
A XOR B 3 GOO00GORAD000V L L A XOR B: 2 OOO0OAAOON00000 L (1
A 3 0000000000000 1 10 A: 47 0000000000101111
B: 3 0OO0OD000000G 101 B: 62 COOOOO0OO011TI10
A XOR B 3 QOOOOO00000000C1 1 A XOR B: 17 OO00COOONN01 000 |
DECIMAL BINARY DECIMAL HINARY
A 1 ROGGOOOONNO0000 1 Al 2 0000000000000010
NOT A: ~2 11111111111 01110 NOT A -5 1111111121000
A 5] DOOCODONVOO00] 10 A 47 Q000000000 101111
NOT A: -7 1111111111111001 NOT A - 48 11L111 1111010000

|

b
[ italics. Optional portions are enclosed in [brackets]. liems that may be

'<§ repeated are indicated by elipses (...). Alternative forms are presented one
:§ above the other.

44 Ti Extended BASIC

CHAPTER

_ Reference Section

This chapter is an alphabetical list of all of the TI Extended BASIC

#commands, staternents, and functions. with a detailed explanation of how
¥ each works. Examples and sample programs are ncluded wherever
i necessary for clarity.

[n the format of the elements, key words are CAPITALIZED. Variables are in

Appendlx A contains a list of the illustrative programs. The Index gives the
pages on which each TI Extended BASIC element is used in an illustrative

Pprogram.

Ti Extended BASIC 45



ABS

"ACCEPT

Format
ABS(numeric-expression)
Description

The ABS function gives the absolute value of numeric-expression. If
numer?c-expression is positive, ABS gives the value of numeric expression. If
numer‘%c-expression ‘s negative. ABS gives its negative {a positive number), If
numeric-expresston is zero, ABS returns zero. The result of ABS is always'a
non-negative number.

Examples
PRINT ABS(42.3) prints 42.3.

VV=ABS{-6.124) sets VV equal to
6.124.

>100 PRINT ABS(42.3)
>100 VV=ABS(-6.124)

46
Tl Extended BASIC

CHAPTER

-

Format

ACCEPT | [AT(row.columri)] [VALIDATE (datatype ....)] IBEEP]
[ERASE ALL} [SIzE[numeric-expression)] :| variable

pescription

The ACCEPT slaternent suspends program execution until data is entered
from the keyboard. Many options are available with ACCEPT, making it far
more versatile than INPUT. It may accept data at any screen position, make
an audible tone {beep) when ready Lo accept the data, erase all characlers on
the screen before accepting data. limit data accepied to a certain number of

characters, and limit the type of characters accepted.

Options
The following options may appear in any order following ACCEPT.

AT(row.column} places the beginning of the input field at the specified row
and column. Rows are numbered 1 through 24. Columns are numbered 1
through 28 with column 1 corresponding to what is called column 3 in the

VCHAR, HCHAR, and GCHAR subprograms.

VALIDATE (data-type ,...) allows only certain characters to be entered. Data-
type specifies which characters are acceptable. If more than one data-type is
specifled, a character from any of the daia-types given is acceptable. The
following are the data-types.

UALPHA permits all uppercase alphabetic characters.

DIGIT permits O through ¢

NUMERIC permits O through 9. .7 ™ +7, =", and "E"".
String-expression permits the characters contained in string-
expression.

BEEP sounds a short tone to signal that the computer is ready to accept
input,

ERASE ALL fills the entire screen with the blank character before accepling
input.

SIZE(numericexpression} allows up to the absolute value of numeric-
expression characters to be input. If numeric-expresston is positive, the field
in which the data is entered is cleared before input is accepted. If numeric-
expression is negative, the input field is not blanked. This allows a default
value to be previously placed in the field and entered by just pressing ENTER.
If there is no SIZE clause, the line is blanked from the beginning position to
the end of the line.

If the ACCEPT statement is used without the AT clause, the last two
characters on the screen (at the lower right) are changed to “edge
characters'” (ASCII code 31).

Tl Extended BASIC 47



ACCEPT

ACCEPT

CHAPTER

Examples

ACCEPT AT(5,7).Y accepts data at
the fifth row, seventh column of the
screen into the variable Y.

ACCEPT VALIDATE("'YN"):R$
accepts Y or N into the variable RS.

ACCEPT ERASE ALL:B accepts data
into the variable B afler purting the
blank character into all screen
positions.

ACCEPT AT(R.C)SIZE(FIELDLEN]
BEEP VALIDATE(DIGIT."AYN"':X8
accepts a digit or the lelters A Y, or
N into the variable X8, The length of
the input may be up to FIELDLEN
characters. The data is accepted al
row R, column C. and a beep is
sounded before data is accepted.

Program

The program al the right illusirates a
typical use of ACCEPT. It allows
entry of up to 20 names and
addresses, and then displays them
all.

>100 ACCEPT AT(5,7):Y

>100 ACCEPT VALIDATE("YN'"):R$

>100 ACCEPT ERASE ALL:B

>100 ACCEPT AT(R,C)SIZE(FIELD
LEN)EEEP VALIDATE{DIGIT, AYN
"V XS

>100 DIM NAME$(20),ADDR${20)

>110 LISPLAY AT(5,1)ERASE ALL
:NAME: "

>120 LISPLAY AT(7,1): ADDRESS

>130 DISPLAY AT(23,1):“TYPE A
2 TO END ENTRY."

>140 FOR S=1 TO 20

>150 ACCEPT AT(5,7)VALIDATE(U
ALPHA,'?"")BEEP SIZE(13):NAME
$(5)

>160 IF NAME$(S}="?" THEN 200
>170 ACCEPT AT(7,10)SIZE(12):
ADDCR$(S)

>180 DISPLAY AT(7,10):"

»190 NEXT S

»200 CALL CLEAR

5210 DISPLAY AT(1,1):"NAME","
ADDRESS"

>220 FCR T=1 TO S-1

5230 DISPLAY AT(7+2,1):NAMES(
T),ADDR$(T)

240 NEXT T

>250 GOTO 250

{(Press SHIFT C to stop the

program. )

18

Tl Extended BASIC

Tl Extended BASIC

49



ASC

Format
ASC(string-expression)

Description

The ASC function gives the ASCII character code which corresponds to the
first character of string-expression. A list of the ASCII codes is given in
Appendix C. The ASC function is the inverse of the CHR$ function.

Examples

PRINT ASC("A'"") prints 65. >100 PRINT ASC("A")
B=ASC['1") sets B equal to 49. >100 B=ASC("1")

DISPLAY ASC("HELLOQ") displays >100 DISPLAY ASC({“HELLG")
72.

50 Tl Extended BASIC

ATN

CHAPTER

=_

Format
ATN(numerlc-expression)

Description

The ATN function returns the measure of the angle (in radians) whose
tangent Is numeric-expression. If you want the equivalent angle in degrees,
multiply by 180/PL. The value given by the ATN function is always in the
range -PI/2 <ATN(X) < Pl/2.

Examples

PRINT ATN(Q} prints O. >100 PRINT ATN{O;
@ =ATN(.44) sets Q equal to >100 Q=ATN(.44)
4145068746.

TI Extended BASIC

51



BREAK

Format
BREAK [line-number-list)

Description

The BREAK rommand requires a line-number-list. It causes the program 1o
stop immediately before the lines in line-number-list are executed. After a
breakpoint is taken because the line is listed in line-number-list, ihe
breakpoint is removed and no more breakpoeints occur at that line unless a
new BREAK command or statement is given,

The BREAK statement without line-number-list causes the program to stap
when it is encountered. The line at which the program stops is called a
breakpoint. Every time a BREAK statement withoul line-number-list is
encountered, the program stops even if an ON BREAK NEXT statement has
been executed.

You can also cause a breakpoint in a program by pressing SHIFT € (CLEAR)
while the program is running, unless breakpoints are being handled in some
other way because of the action of ON BREAK.

BREAK is useful in finding out why a program is not running exactly as you
expect it to. When the program has stopped vou can print values of variables
to find out what is happening in the program. You may enter any command
or stalement that can be used as a command. If vou edit the program,
however, you cannot resume with CONTINUE.

A way lo remove breakpoints set with BREAK foilowed by line numbers is
the UNBREAK command. Also. if a breakpoint is set at a program line and
that line is deleted. the breakpeint is removed. Breakpoints are also removed
when a program is saved with the SAVE command. See ON BREAK for a
way to handle breakpoints.

Whenever a breakpoint occurs, the standard character se: is restored. Thus
any standard characters that had been redefined by CALL CHAR are restored
to the standard characters. A breakpoint also restores the standard colors.
deletes sprites, and resets sprite magnification to the default value of 1.

Options

The line-number-list is optional when BREAK is used as a stalement, but is
required when BREAK is used as a command. When present, it causes the
program to stop immedialely before the lines in line-number-list are
exccuted, After a breakpoint is taken because the line is listed in line-
number-list, the breakpoint is removed and no more breakpoints oceur at
that line unless a new BREAK command or statement is given.

50 Tl Extended BASIC

BREAK

CHAPTER

Examples

BREAK as a slatement causes a
breakpoint when that statement is
executed.

BREAK 120,130 as a statement
causes breakpoints before execulion
of the line numbers listed.

BREAK 200,300,1105 as a command
causes breakpoints before execution
of the line numbers listed.

>150 BREAK

>110 BREAK 120,130

>BREAK 200,300,1105

Extended BASIC

53



BYE

Format
BYE

Description

The BYE command ends TI Extended BASIC and returns the computer to
the master title screen. All open files are closed, all program lines are erased.
and the computer is reset. Always use the BYE command instead of SHIFT Q
{QUIT) to leave TI Extended BASIC. SHIFT Q (QUIT) does not close files, which
may result in data being lost from external devices.

54 TI Extended BASIC

CALL CHAPTER

Format
CALL subprogram-name [(parameter-list)]

Description

The CALL statement transfers control to subprogram-name. The
subprogram may be either one built into TI Extended BASIC, such as
CLEAR. or one you have written. After the subprogram is executed. the next
staternent after the CALL statement is executed. CALL may be either a
statement or a command for calling built-in TI Extended BASIC
subprograms, but must be a statement when calling subpregrams that you
write.

Options

The parameter-list is defined according te the subprogram you are calling.
Some require no parameters at all, some require parameters, and some have
optional parameters. Each built-in subprogram is discussed under its own
entry in this manual. The subprcgrams you can write are discussed in the
section in Chapter Il on subprograms and under SUB. The following are the
subprogram-names of the built-in TI Extended BASIC subprograms.

CHAR HCHAR PATTERN
CHARPAT INIT PEEK
CHARSET JOYST POSITION
CLEAR KEY SAY
COINC LINK SCREEN
COLOR LOAD SOUND
DELSPRITE LOCATE SPGET
DISTANCE MAGNIFY SPRITE
ERR MOTION VCHAR
GCHAR VERSION
Program

The program at the right illustrates >100 CALL CLEAR
the use of CALL with a supplied >110 X=4
subprogram (CLEAR) in line 100 and >120 CALL TIMES({X)
the use of a written subprogram >130 PRINT X
(TIMES) in line 120. >140 STOP

>200 SUB TIMES(Z,

>210 Z=Z*P1

>220 SUBEND

>RUN

--gscreen clears

12.56637061

TI Extended BASIC 55



CHAR subprogram

Format
CALL CHAR(charactercode pattern-identifier |....] )

Description

The CHAR subprogram allows you to define special graphics characters. You
can redefine the standard set of characters (ASCII codes 32-95) and the
undefined characters, ASCII codes 96-143. Note that fewer program defined
characters are available in TI Extended BASIC than in T! BASIC, where
ASCII codes 96-156 are allowed. The CHAR subprogram is the inverse of the
CHARPAT subprogram.

Character-code specilfies the character which you wish to define and must be
a numeric expression with a value from 32 through 143. Pattern-identifier is
a 0 ihrough 64 character string expression which specities the patiern of the

character(s) you are defining. This string cxpression is a coded representation
of the dots which make up a character on the screen.

Each character is made up of 64 dots comprising an 8 by 8 grid as shown
below.

LEFT RIGHT
BLOCKS BLOCKS

ROW 1
ROW 2
ROW 3
ROW 4
ROW 5
ROW 6
ROW 7
ROW 8

Each row is partitioned into two blocks of four dots each:
anvrow | [ [ [ [ ]]]
| ! I

LEFT RIGHT
BLOCKS BLOCKS

Each character in the pattern-identifier describes the pattern in onc block of
one row. The rows are described from ieft to right and from top to botiom.
Therefore the first two characters in the pattern-identifier describe the
pattern for row one of the grid. the next two the second row. and so on.

56 TI! Extended BASIC

CHAPTER
CHAR SUBPROGRAM

Characters are created by turning some dots "on’ and leaving others "off.”
The space character (ASCII code 32} is a character with all the dots turned
“off.” Turning all the dots “on’ produces a solid block. The color of the on
dots is the foreground color. The color of the off dots is the background color,

All the standard characters are set with the appropriate dots on. To create a
new character. you specify what dots to turn on and leave off. In the |
computer a binary code, one number for each of the 64 dots, is used to
specify which dots are on and off in a particular block. A more human-
readable form of binary is hexadecimal. The following table shows all the

.possible on/off conditions for the four dots in a given block, and the binary

and hexadecimal codes for each condition.
Binary Code Hexadecimal
(0=0ff: 1 =0n) Code
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
i110
1111
If the patiern-identifier is less than 16 characters, the computer assumes
that the remaining characters are zeros. If the pattern-identifier is 17 to 32
characters, two character-codes are defined, the first with the first through
sixteenth characters and the second with the remaining characters, with
zeros added as needed. If the pattern-identifier is 33 to 48 characters, three
character-codes are defined, the first with the first through sixteenth
characters, the second with the seventeenth through thirty-second
characters, and the third with the remaining characters, with zeros added as
1eeded. If the pattern-identifier is 49 to 64 characters, four character-codes
re defined, the first with the first through sixteenth characters, the second
7ith the seventeenth through thirty-secend characters. the third with the
arty-third through forty-eighth characters, and the fourth with the
*maining characters, with zeros added as needed. If the pattern-identifier is
onger than 64 characters or is long enough to define characters higher than
character code 143, the excess is ignored.

BLOCKS

TEODOTETP>» OO~ AW~ O

TI Extended BASIC 57



CHAR SUBPROGRAM

Programs
To describe the dot pattern pictured

below. you code this string for CALL

CHAR:
" 1898FF3D3C3CE404"
LEFT RIGHT BLOCK
BLOCKS BLOCKS CODES
ROW 1 18
ROW 2 98
ROW 3 FF
ROW 4 3D
ROW 5 3C
ROW 6 3C
ROW 7 E4
ROW 8 04

The program at the right uses this

and one other string to make a figure

“*dance."”

If a program stops for a breakpoint,
the predefined characters (ASCII
codes 32 through 95) are reset to
their standard pattern. Those with
codes 96 through 143 keep their
program defined pattern. When the

program ends normally or because of

an error, ail predefined characters
are reset.

>100
>110
>120
>130
>140
>150
>160
>170
>180
>190
>200
>210
»220
>RUN

CALL CLEAR

A$="“1898FF3D3C3CE404"
B3="1819FFBC3C3C2720"

CALL COLOR(9,7,12)
CALL VCHAR(12,16,96)
CALL CHAR(96,4%)
GISUB 200

CALL CHAR(96,B$)
GOSUB 200

GOTO 150

FOR DELAY=1 TO 50
NEXT DELAY

RETURN

-- Screen clears
-~ charscter moves

(Press SHIFTC to stop the

progranm. )

>100 CALL CLEAR

>110 CALL CHAR{96, FFF*FFFFF

FFFFFFF"’)

>120 CALL CHAR(42, QFOFQFQF0

FOFCFOF"")

>130 CALL HCHAR(12,17,42)
>140 CALL VCHAR(14,17,96)
>150 FOR DELAY=1 TO 500
>160 NEXT DELAY

>RUN

58

Ti Extended BASIC

CHAPTER

CHARPAT subprogram

§rormat

CALL CHARPAT(characier-code,string-vartable |,...] )

Description

‘The CHARPAT subprogram returns in string-variable the 16-character
pattern identifier that specifies the pattern of character-code. The CHARPAT
subprogram is the inverse of the CHAR subprogram. See the CHAR
subprogram for an explanation of the value returned in string-variable.

Example

CALL CHARPAT(33.CS) sets C$
equal to “0010101010001000", the
pattern identifier for character 33,
the exclamation point.

>100 CALL CHARPAT(33,C$)

——

TI Extended BASIC 59




CHARSET subprogram

Format
CALL CHARSET

Description

The CHARSET subprogram restores the standard character patterns and
standard colors for characters 32 through 95. Normally when a program is
run by another program using RUN as a statement, characters 32 through
95 are not reset to their standard patterns and colors. CHARSET is useful

when this feature is not desired.

Example
CALL CHARSET restores the
standard characters and their colors.

>100 CALL CHARSET

CHR$

Format
CHRS(numeric-expression)

Description

The CHRS function returns the character corresponding to the ASCII
character code specified by numeric-expression. The CHRS function is the
inverse of the ASC function. A list of the ASCII character codes for each
character in the standard character set is given in Appendix C.

Examples

PRINT CHRS(72) prints H. >100 PRINT CHR$(72)

X8 =CHRS(33) sets X8 equal to !. >100 X$=CHR$(33)

Program

For a complete list of all ASCII
characters and their corresponding
ASCII values, run the program on
the right.

>100 CALL CLEAR
>110 FOR A=32 TD 9%
>120 PRINT Aj; ' ";CHR$(A);

>130 NEXT A

60 Tl Extended BASIC

CLEAR subprogram

CHAPTER

Format
CALL CLEAR

Pescription

The CLEAR subprogram is used to clear (erase) the entire screen. When the
CLEAR subprogram is called, the space character (ASCII code 32} is placed

in all positions on the screen.

;f'l’rograms

!_When the program at the right is
run, the screen is cleared before the
PRINT statements are performed.

df the space character (ASCII code
32) has been redefined by the CALL
’_ HAR subprogram, the screen is
filled with the new character when
CALL CLEAR is performed.

>100 CALL CLEAR

>110 PRINT “HELLO THERE!"
>120 PRINT “HOW ARE YOQU?"
>RUN

--s¢reen clears

HELLO THERE!

HOW ARE YQU?

>100 CALL CHAR{32,"0103070F1F
3F7FFF)

>110 CALL CLEAR

>120 GOTO 120

>RUN

~-screen 1s filled with
(Press SHIFT C to stop the
progran. )

TI Extended BASIC

61



CLOSE

Format
CLOSE #file-number {:DELETE]

Description

The CLOSE statement stops a program’s use of the file referenced by #file-
number. After the CLOSE staternent is performed, the file cannot be used by
the program unless you OPEN it again. The computer no longer associates
the #file-number with the closed file, so you can assign that number to
another file.

When no program is running. the following actions close all open files:
Editing the program
Entering the BYE command
Entering the RUN command
Entering the NEW command
Entering the OLD command
Entering the SAVE command
Entering the LIST command to a device

If you use SHIFT Q (QUIT) to leave Tl Extended BASIC, the computer does not
close any open files, and you may lose data on any files that are open. To
avoid this possibility, you should leave TI Extended BASIC with BYE instead
of SHIFT @ (QUIT).

Options

You may delete a diskette file at the same time you close it by adding
‘“:DELETE" to the statement. Other devices, such as cassette recorders, do
not allow DELETE. The manual for each device discusses the use of
DELETE.

CLOSE

CHAPTER

Examples

when the computer performs the
CLOSE statement for a cassette tape
recorder, you receive instructions for
operating the recorder.

The CLOSE statement for a diskette
requires no further action on your

part.

S

>100 OPEN #24:CS1", INTERNAL,
INPUT, FIXED

~-program lines

>200 CLOSz W24
>RUN
--opening instructions

--program runs

* PRESS CASSETTE S3TOP Cs1
THEN PRESS ENTER

>100 OPEN #24: DSK1.MYDATA",I
NTERNAL, INPUT, FIXED

--program lines

>200 CLOSE #24
>RUN
--program runs

62 Tl Extended BASIC

M Extended BASIC

63



COINC subprogram

Format

CALL COINC(#sprite-number . #sprite-nu mber.tolerance.numeric-variable)

CALL COlNC(#Spritenumb(’r.dot-row.doz-Column.lolerance,numeric-
variable)

CALL COINC(ALL.numeric-variable)

Description

The COINC subprogram detects a coincidence between a sprite and another
sprite or a position on the screen. The value returned in numeric-variable is
-1 if there is a coincidence and O if there is no coincidence.

Il the keyword ALL is given, the coincidence of any two sprites is reported. If
tWo sprites are identified by #sprite-number. their coincidence is reported. If
#sprite-number and a location are identified, their coincidence is reported.

If the keyword ALL is given, sprites are coincident only if one or more of the
dots which make them up occupy the same position on the screen. If two
sprites or a sprite and a location are given, then tolerance must be specified,
and two sprites are coincident if their upper left hand corners are within the
value specified by tolerance. A sprite and a location are coincident if the
upper left hand corner of the sprite and the bosition specified by dot-row and
doi-colurmn are within the value specified by tolerance. These coincidents are
reported even if there is no apparent averlap of the sprites or the sprite and
the position.

Doi-row and dot-column are numbered consecutively starting with 1 in the
upper left hand corner of the screen. Thus the dot-row can be from 1 to 192
and the dot<olumn can be from 1 (o 258, (Actually the dot-row can go up to
256. but thc positions from 193 through 256 are off the botlom of the
screen.) If any part of the sprite occupies the pesition given, then there is a
coincidence.

Whether or not a coincidence is detected depends on several variables. if the
sprites are moving very quickly, COINC may not be able to detect their
coincidence. Also, COINC checks for a coincidence only when it is called, so a
program may miss a coincidence that occurs when the program is executing
some other statement.

COING SUBPROGRAM

CHAPTER

Program
The program at the right defines two
gprites that consist of a triangle.

Line 160 shows a coincidence
because the sprites are within 10
dots of each other.

Line 180 shows no coincidence
because the shaded areas of the
sprites are not coincident.

>100 CALL CLEAR
>110 S$="0103070F1F3F7FFF"
>120 CALL CHAR(96,5%)

>130 CALL CHAR(100,S$)

>140 CALL SPRITE(#1,96,7,8,8)
>150 CALL SPRITE(#2,100,%,1,1)
>160 CALL COINC(A1,#2,10,C)
>170 PRINT C

>180 CALL COINC(ALL,C)
>190 PRINT C
>RUN
-1
0

64 TI Extended BASIC

TI Extended BASIC

65



— CHAPTER
COLOR subprogram

COLOR subprogram

To use CALL COLOR you must also specify to which of the fifteen character
sets the character belongs. (Note that TI BASIC has sixteen character sets

while TI Extended BASIC has fijteen.) The list of ASCII character codes for

Format .

CALL COLOR(#sprite-number foreground-color |,...] )

CALL COLOR{character-set,ﬁ)reground-color,background-color o] the standard characters is given in Appendix C. The character-set numbers
are given below:
Description Set Number Character Codes

The COLOR subprogram allows you to specify either a foreground-color for

) 30-31
#sprite-number or a foreground-color and background-color for characters in 1 32-39
the character-set. In a given CALL COLOR. you may define sprite color(s) or 2 40-47
character set colors, but not both. 3 48-55
Each character has two colors. The color of the dots that make up the 4 22??
character itself is called the foreground-color. The color that occupies the rest 5
. i . N 6 72-79
of the character position on the screen is called the background-color. In 80-87
sprites. the background-color is always code 1, transparent, which allows 7 88.95
characters and the screen color to show through. To change the screen color, 8 96.103
sec the SCREEN subprogram. Foreground-color and background-color must 8 104-111
have values from 1 through 16. The color codes are shown below: 10 112-119
Color Code Color i; 120-127
1 Transparent 13 128-135
3 Medium Green
4 Light Green Examples
> Dark Blue CALL COLOR(3.5.8) scts the >100 CALL COLOR(3,5,8)
? Light Blue Joreground-color of characters 48
8 83::1 Red through 55 to 5 (dark blue) and the
9 Medium Red background-color to 8 (cyan).
10 Light Red CALL COLOR(¥5.16) sets sprite >100 CALL COLOR(#5,16)
i;‘ Efg: ¢ Tfillll(z) ‘:’; number 5 to have a foreground-color
13 Dark Green of 16 (white). The background-color
14 Magenta is always 1 (transparent).
:g ‘\(i/’ri?i)t!e CALL COLOR(#7.INT(RND* 16 + 1)) >100 CALL COLCR{#7,INT(RND¥16

Until CALL COLOR is pertormed, the standard Joreground-color is black
(codc 2) and the standard background-color is transparent (code 1} for all
characters. Sprites have their color assigned when they are created. When a
breakpoint occurs. ail characiers are reset to the standard colors.

66

TI Exrended BASIC

sets sprite number 7 to have a
Joreground-color chosen randomly
from the 16 colors available. The
background-color is 1 (transparent).

+1))

TI Extended BASIC



CONTINUE

Format

CONTINUE
CON

Description

The CONTINUE command restarts a program which has been stopped by a
breakpoint. It may be entered whenever a program has stopped running
because of a breakpoint caused by the BREAK command or statement or
SHIFT C (CLEAR). However, you cannot use the CONTINUE command if you
have edited a program line. CONTINUE may be abbreviated as CON,

When a breakpoint occurs, the standard character set and standard colors
are restared. Sprites cease to exist. CONTINUE does not restore standard
characters that have been reset or any colors. Otherwise, the program
continues as if no breakpoint had occurred.

G8 TI Extended BASIC

COS

CHAPTER

—_—

Format
CcOS(radian-expression)

Description

The cosine function gives the trigonometric cosine of radian-expression. If
the angle is in degrees. multiply the number of degrees by PU180 to get the

equivalent angle in radians.

Program
The program on the right gives the
cosine of several angles.

>100 A=1.047197551196
>110 B=60
>120 C=45%P1/180
>130 PRINT COS(A);COS(B)
>140 PRINT COS{B*PI/180)
>150 PRINT COS(C)
>RUN

.5 —.9524129804

5
.7071067812

Tl Extended BASIC

69



DATA

—

DATA

CHAPTER

Format
DATA data-list

Description

The DATA statement allows you to store data inside your program. The data,
which may be numeric or string constants. is listed in data-list separated by
commas. During program execution, the READ statement assigns the values
in data-list to the variables specified in variable-iist in the READ statement.

DATA statements may be localed anywhere in a program. However, the
order in which they appear is important. Data from several DATA statements
is read sequentially, beginning with the first item in the first DATA
statement. If a program has more than one DATA statement, the DATA
statements are read in the order in which they appear in the program, unless
otherwise specilied by a RESTORE statement. Thus the order in which data
appears in the program normally determines the order in which data is read.
DATA statements cannot be part of multiple statement lines.

Data in data-list must correspond to the type of the variable to which it is
assigned in the READ stalement. Thus if a numeric variable is specified in
the READ statement, a numeric constant must be in the corresponding
position in the DATA statement. Similarly, if a string variable is specified, a
string constant must be supplied. A number is a valid string, so you may
have a numeric constant in a DATA statement where a string is called for in
the READ statement. If a DATA statement contains adjacent commas. the
computer assumes you want to enter a null string (a string with no
characters).

When using string constants in a DATA statement, you may enclose the
string in quotes. However, if the string you include contains a comma,
leading spaces. or trailing spaces, you rnust enclose the string in quotes. If
the siring is enclosed in quotes. quotes in the string are represented by
double quotes.

Program

The program at the right reads and
prints several numeric and string
constants. Lines 100 through 130
read five sets of data and print their
values. two to a line.

Lines 190 through 220 read seven
.data elements and print each on its
own line.

First two elemenis of line 140.
‘Second two elements of line 140.
;Last element of line 140 and first of
‘line 150.

,%Second and third elements of line
4150.

fFourth and fifth elements of line 150.

ILine 160.

sLine 170.

ILine 180.

First element of line 230.

iSecond element of line 230.

:E"Null string for two commas in line
230.

‘Last element of line 230,

>100 FOR A=1 TO 5
>110 READ 3,C
>120 PRINT B;C
>130 NEXT A

>140 DATA 2,4,6,7,8
>150 DATA 1,2,3,4,5
HIS HAS QUOTES™

>160 DATA "'~ T

>170 DATA * NO QUOTES, HERE"
>180 DATA NO QUOTES HERE EITH
ER

>190 FOR A=1 TC 7

>200 READ B$

>210 PRINT B$

>220 NEXT A
>230 DATA 1,NUMBER,,TI
>RIN

2 4

6 7

8 1

2 3

4 5

“THIS HAS QUOTES"

NO QUOTES, HERE

NC QUOTES HERE EITHER
1

NUMBER

TI

70 Ti Extended BASIC

T! Extended BASIC

71



|

DEF

Format
DEF function-name |(parameter)] =expression

Description

The DEF stalement allows you to define your own functions. Function-name
may be any variable name. If you specify a parameter following function-
name, the parameter must be enclosed in parentheses and may be any
scalar variable name. If expression is a string. function-narme must be a
string variable name, i.e. the last character must be a dollar sign.

The DEF statement must occur at a lower numbered line than any reference
to the function it defines. However, a DEF statement may not appear in an
IF-THEN-ELSE statement. When the computer encounters a DEF statement
during program execulion, it proceeds to the next staternent without taking
any action. A function may be used in any string or numeric expression by
using function-name followed by an expression enclosed in parentheses if a
parameter was specified in the DEF statement.

When a reference to the function is encountered in an expression (by using
Sunction-name in a statement), the function is evaluated using the current
values of the variables specified in the DEF statement and the value of
parameter il there is one. A DEF statement can refer to other defined
functions. However. the [unction vou specily may not refer to itself cither
directly {e.g. DEF B=B*2) or indirectly (e.g. DEF F =G:DEF G=F),

Attempting to print the value of a function with PRINT used as a command
does not work if the Memory Expansion is connected to your computer.,

Options

If vou specify a parameter for a function, when a reference to the function is
encountered in an expression, its valuc is assigned to parameter. The value
of the function is then determined using the value of pararmeter and the
values of the other variables in the DEF statement. If parameter is given in
the DEF sraternent. an argument value must always be given when referring
to the function.

The parameter name used in the DEF statement affects only the DEF
statement in which it is used. This means that it is distinet from any other
variable with the same name which appears elsewhere in the program.

Parameter may not be used as an array. You can use an array element in a
function as lung as the array does not have the same name as parameter. For
example you may use DEF F(A)=B(Z) but not DEF F(A)=A(Z).

P

DEF

o
I
>
e
—
m
o)

Examples

DEF PAY(OT)=40*RATE + 1.5*
RATE*OT defines PAY so that each
time it is encountered in a program
the pay is figured using the RATE of
pay times 40 plus 1.5 times the rate
of pay times the overtime hours.

DEF RND20=INT(RND*20 + 1)
defines RND20 so that each time it is
encountered in a program an integer
from 1 through 20 is given.

DEF FIRSTWORDS(NAMES)=SEGS
{NAMES.1 POS(NAMES,” ".1) - 1]
defines FIRSTWORDS to be the part
of NAMES that preceeds a space.

>100 DEF PAY(OT)=40%RATE+1.5%
RATE*QT

>100 DEF RND20=INT(RND¥*20+1)

>100 DEF FIRSTWORD$(NAMES$)=SE
G3(NAME$, 1,POS(NAMES, ",1)-
1)

79 T1 Extended BASIC

Tt Extended BASIC

73



DELETE

Format
DELETE device-filename

Description
The DELETE command allows you to remove a program or data file from the
computer's filing system. Device-filename is a string expression. If a string

constant is used, it must be enclosed in quotes. You may also delete data files
by using the keyword DELETE in the CLOSE statement.

Some devices (such as diskettes) allow deleting files: others (such as
cassettes) do not. Read the manual for the specific device for more
information.

Example

DELETE "DSK1.MYFILE" deletes
the file named MYFILE from the
diskette in disk drive 1.

>DELETE “DSK1.MYFILE"

Program

The program on the right illustrates
a use of DELETE,

>100 INPUT “FILENAME: ":X$
>110 DZILETE X$

DELSPRITE subprogram

74 T1 Extended BASIC

CHAPTER

Format

CALL DELSPRITE(#sprite-number |[....])
CALL DELSPRITE(ALL)

Description

The DELSPRITE subprogram removes sprites from further access by a
program. You may delete one or more sprites by specifying their numbers
preceded by a number sign (#) and separated by commas, or you may dellete
all sprites by specifying ALL. After being deleted with DELSPRITE, a sprite
can be recreated with the SPRITE subprogram.

Examples
CALL DELSPRITE(#3) deletes sprite
number 3.

>100 CALL DELSPRITE(#3)

CALL DELSPRITE(#4,#3*C} deletes >100 CALL DELSPRITE(#4,#3%C)

sprite number 4 and the sprite
whase number is found by
multiplying 3 by C.

CALL DELSPRITE(ALL) deletes all >100 CALL DELSPRITE(ALL)

sprites.

Tl Extended BASIC



DIM

Format
DIM array-namelinteger] |.integer2) ... [.integer?| |....])
Description

The DIM statement reserves space in the computer’'s memory for numeric
and string arrays. You can dimension an array only once in a program. If you
dimension an array, the DIM statement must appear in the program at a
lower numbered line than any other reference to the array. If you dimension
more than one array in a single DIM statement, array-names are separated
by commas. Array-name may be any variable name. A DIM statement may
not appear in an IF-THEN-ELSE statement.

You may have up to seven-dimensional arrays in TI Extended BASIC. The
number of integers separated by commas following the array name
determines how many dimensions the array has. The values of the intcgers
determine the number of elements in each dimension.

Space is allocated for an array after you enter the RUN command but before
the first statement is executed. Each element in a string array is a null string

and each element in a numeric array is zero until it is replaced with another
value,

The values of the integers determine the maximum value of each subscript
for that array. If you are using an array not defined in a DIM statement, the
maximum value of each subscript is 10. The first element is zero unless an
OPTION BASE statement sets the minimum subscript value to 1. Thus an
array dcfined as DIM A(5) is a one dimensional array with seven elements
unless the zero subscript is eliminated by the OPTION BASE statement.

Examples

DIM XS(30) reserves space in the
computer’s memory tfor 31 members
of the array called XS.

>100 DIM X$(30)

DIM Di100).B(10.9) reserves space in
the computer's memory for 101
members of the array called D and
110 (11 times 10) members of the
array called B.

>100 DIM D(109),B(10,9)

76 TI Extended BASIC

CHAPTER

DISPLAY

Format
DISPLAY [ [AT(row.column)| [BEEP] [ERASE ALL] [SIZE(numeric-
expression)j :] variable-list

Description

The DISPLAY siatement displays information on the sc'rccn_ Many f)ptions
are available with DISPLAY. making it far more \"Cfsatll(‘ than PRINT . It may
display data at any screen position. make an audible tone [beep‘) when
displaying data, blank screen positions, and erase all characters on the
screen belore displaying data.

Options B
AT(row.colurmn) places the beginning of the display field at the specified row
and column. Rows are numbered 1 through 24, Coiu.mns arc numbered. 1
through 28 with column 1 corresponding with what is call.ed c:olumn 3 in the
VCHAR. HCHAR, and GCHAR subprograms. If the AT option is 1}9& Present,
data is displayed at row 24, column 1. just as it is with the PRIN I' statement.

BEEP sounds a short tone when the data is displayed.

ERASE ALL fills the entire screen with the blank character before displaying
data.

SIZE(numeric-expression) puts numeric-expressioin bl‘ank characters on Lhe.
screen starting at row and colurmn. If the SIZE option is not pre.s.ent‘. the res:
of the row at which data is to be displayed is blanked. If numneric-expression
is larger than the number of positions remaining in the row, only the rest of
the row is blanked.

Examples

DISPLAY AT(5.7):Y displays the
value of Y at the fifth row, seventh
column ot the screen.

>100 DISPLAY AT(5,7):Y

DISPLAY ERASE ALL:B puts the >100 DISPLAY ERASE ALL:3

blank character into all screen

positions before displaying the value

of B.

100 DISPLAY AT(R,C) SIZE(FIE

> TI(R.C) SIZE(FIELDLEN)
D ) LDLEN)BEEP: %$

BEEP:XS displays the value of X8 at
row R, column C. First it beeps and
blanks FIELDLEN characters.

77
TI Extended BASIC



DISPLAY

Program

The program at the right illustrates a
use of DISPLAY. It allows you to
position blocks at any screen position
to draw a figure or design.

>100 CALL CLEAR

>110 CALL COLOR(9,5,5)

>120 DISPLAY AT{23,1):"ENTER
ROW AND COLUMN."

>130 DISPLAY AT (24,1):"ROW:

COLUMN:

>140 FOR COUNT=1 TO 2

>150 CALL KEY(O,ROW(COUNT),S)
>160 IF S<=0 THEN 150

>170 DISPLAY AT(24,5+COUNT)SI
ZE(1) :STR$(ROW(COUNT)-48)
>180 NEXT CQUNT

>190 FOR CQUNT=1 TO 2

>200 CALL KEY(0,COLUMN(COUNT)
»S)

>210 IF 3<=0 THEN 200

>220 DISPLAY AT(R4,16+COUNT)S
1ZE(1) :STR$ (COLUMN ( COUNT )-48
)

>230 NEXT COUNT

>24Q ROW1=10*(RON(1)—48)+ROW(
2)-48

>250 COLUMN1=10*(COLUMN(1)—48
J4+COLUMN(2)-48

>260 DISPLAY AT(ROW1,COLUMN1)
SIZE(1):CHR$(96)

>270 GOTO 130

(Press SHIFT C to stop the
program. )

78

TI Extended BASIC

CHAPTER

DISPLAY USING

Format | . .
DISPLAY [option-list:] USING string-expression [': uanqbie- ist]
DISPLAY [option-list:] USING line-number [: variable-list]

pescription N
:;c DI,S)PLAY...USING statement is the same as DISPLAY \kfi(h th.e g?d;ti;c:n[f
of the USING clause, which specifies the format of tpe data in ;)Jarl.a e-‘ en_t
string-expression is present, it defines the format. If line-nuné‘Eef( is ;fnus nt.,
it refers to the line number of an ]M{\GE statement. See IMA or
explanation of how the format is defined.

Examples

‘DISPLAY AT(10.4):USING "## #% "N
‘displays the value of N at the tenth
yow and fourth column, with the
format ## #E

DISPLAY USING “##. ##":N displays
the value of N at the 24th row and

first column, with the format
cpa RE

>100 DISPLAY AT(10,4):USING
“HEHR N

>100 DISFLAY USING “##.## :N

Tl Extended BASIC

79



DISTANCE subprogram

i

Format

CALL DISTANCE( #sprite-number #sprite-number numeric-variable)
CALL DISTANCE(#sprite-number dot-row.dot-column,numeric-variable)

Description

The DISTANCE subprogram returns the square of the distance between two
sprites or beiween a sprite and a location. The position of each sprite is
considered to be its upper left hand corner. Dot-row and dot-column are from
1 to 256, The squared distance is returned in numeric-variable.

The number returned is computed as follows: The difference between the
dot-rows of the sprites (or the sprite and the location) is found and squared.
Then the difference between the dot-columns of the sprites (or the sprite and
the location) is found and squared. Then the two squares are added. If the
sum is larger than 32767, then 32767 is returned. The distance between the
sprites (or the sprite and the location) is the square root of the value
returned.

Examples

CALL DISTANCE(#3.#4,DIST) scis
DIST equal to the square of the
distance between the upper left hand
corners of sprite #3 and sprite #4.

>100 CALL DISTANCE(#3,#4,DIST)

CALL DISTANCE(#4,18.89,D) scts D
equal to the square of the distance
between the upper left hand corner
of sprite #4 and position 18, 89,

>100 CALL DISTANCE(#4,18,89,D)

80 TI Extended BASIC

CHAPTER

END

=

Format
END
D o d interchangeably
he END statement ends your program and may be used intéerchang 3
Tith the STOP statement. Although the END stfitemenl may apgetz;lr nds
. here, it is normally placed as the last line in a program and thus o s
:rl:g‘;rogra;m both physically and logically. The STOPl”lsltat;?m;;lgst:ssedy
¢ ram te halt. In X :
in other places that you want your prog '
;fglcnvou arg not required to use the END statement. Thct;: lpro,gram
autométically stops after it exccutes the highest numbered line.

I'1 Extended BASIC

81



EOF

Format
EOF{file-number)

Description

'fIl:}(;fn F;Off_-‘] function is used to test whether there is another record to be read
ile. The value of file-number indicates the file to be tested and must

correspond to the number of a > i
Sorespond to n open file. The EOF function cannot be used

The EOF function always assu
. 3 mes that the nex( record i i
sequentially, even if you are using a RELATIVE file. ® going fo be read

’fli‘lr::e I\;a;gz tai;z.t nthtc Eli(t)lf‘ .rlunction provides depends on where you are in the

. ot a e last record of the file, the ©

0. If you are at the last record of i \ o returns & v vatue of

of the file, the functi
the diskette or other stora i i oot the end of the e
ge medium is full, you : ] i

e : ‘ . You are at the end of the file,

there is no more room for any data, the function returns a value 0;'—“_ 1

For more information. see the Disk Memory System manual
Examples
PRINT EOF(3) prints a value

according to whether you are at the
end of the file that was opened as #3,

>100 PRINT EOF(3)

IF EOF{27)< >0 THEN 1150 transfers
control to line 1150 if you are at the

end of the file that was opened as
#27,

>100 IF EOF(27)<>0 THEN 1150

IF EOF(27) THEN 1150 transfers
control to line 1150 if you are at the

end of the file that was opened as
#27.

>100 IF EOF(27) THEN 1150

| CALL ERR(W.X.Y.Z) sets W equal to

82
Tl Extended BASIC

CHAPTER

RR subprogram

Format

' CALL ERR(error-code.error-type [.error-severity.line-number] )

Description
The ERR subprogram returns the error-code and error-type of the most

recent uncleared error. An error is cleared when it has been accessed by the

ERR subprogram, another error has occured, or the program has ended.

Error-codes are two or three digit numbers. The meanings of each of the

| codes 1s in Appendix N.

If error-type is a negative number, then the error was in the execution of the
program. If the error-code is 130 (LO ERROR), the error-type is a posiive
number and the number is the number of the file that caused the error.

If no error has occured. CALL ERR returns all values as zeros.

CALL ERR is used in conjunction with ON ERROR.

Options

You may optionally obtain the error-severity and line-number on which the
error occured. The error-severity is always 9. The line-number is the number
of the line being executed when the error occurred. It is not always the line

L that is the source of the problem since an error may occur because of values

generated or actions taken elsewhere in a program.

Examples
CALL ERR(A B) sets A equal te the
error-code and B equal to the error-

>100 CALL ERR(A,B)

type of the most recent error.

>100 CALL ERR(W,X,Y,Z)

the error-code, X equal to the error-
type. Y equal to the errorseverity.
and Z equal to the ltne-number of
the most recent €rror.

TI Extended BASIC

83



ERR SUBPROGRAM

Program

The program on the right illustrates
the use of CALL ERR. An error is
caused in line 110 by calling for an
illegal screen color. Because of lince
100, control is transfered to line 130,
Line 140 prints the values obtained.
The 79 indicates that a bad value
was provided.,

The -1 indicates that the error was
in a statement. The 9 is the error-
severity. The 110 indicates that the
error occured in line 110.

>100 0¥ ERROR 130
>110 CALL SCREEN (18)
>120 STOF

>130 CALL ERR(W,X,Y,Z)
>140 FRINT W;X;Y;Z
>RUN

> 79 -1 9 110

i

i
J
i
J

84

T Exlended BASIC

¥ Description |
" The EXP funct.on returas the exponential value (eX) of numeric-expression.

& The value of e is 2.718281828459.

CHAPTER

EXP({rnumeric-expression)

Examples

Y =EXP(7) assigns to Y the value of e
¥ raised to the seventh power which is
- 1096.633158429.

1 L =EXP(4.394960467) assigns to L

the value of e raised 1o the

k. 4.394960467 power which is
i 81.04142688868.

>100 Y=EXP(7)

>100 L=EXP{4.394960467)

TI Extended BASIC

85



FOR TO [STEP]

Format
FOR control-variable = initial-value TO limit [STEP increment]

Description

The FOR-TO-STEP statement repeats execution of the statements between
FOR-TO-STEP and NEXT until the control-variable is outside the range of
inittal-value to limit. The FOR-TO-STEP stalement is useful when repeating
the same steps in a loop. The FOR-TO-STEP statement cannot be used in an
IF-THEN-ELSE statement.

Control-variable may be any unsubscripted numeric variable. It acts as a
counter for the loop. Initial-value and limit are numeric expressions. The
loop starts with control-variable given a value of thitial-vaiue. The second
time through the loop, the value of control-variable is changed by one or
optionally by increment, which may be a positive or negative number. This
continues until the value of contrel-variable is outside the range initial-value
to limit. Then the statement after NEXT is executed. The value of control-
variable is not changed when the compulter leaves the loop.

The value of control-variable can be changed within the loop. but this must
be done carefully to avoid unexpected results. Loops may be *'nested.” that
is one loop may be contained wholly within another. You may leave a loop
using GOTO, GOSUB. IF-THEN-ELSE, or the like, and then return. However.
you may not enter a FOR-NEXT loop at any point except at its start.

If initial-value exceeds limit at the beginning of the FOR-NEXT loop. none of
the statements in the loop are executed. Instead execution continues with the
first statement after the NEXT statement.

Examples

FOR A=1 TO 5 STEP 2 executes the
statements between this FOR and
NEXT A three times, with A having
values of 1, 3, and 5. After the loop is
finished, A has a value of 7.

>100 FOR A=1 TO 5 STEP 2

FOR J=7 TO -5 STEP - .5 executes
the statemnents between this FOR
and NEXT J 25 times, with J having
valuesof 7, 6.5, 6, ..., -4, -4.5, and
- 5. After the loop is finished, J has
a value of -5.5.

>100 FOR J=7 TO -5 STEP -.5

86 Tl Extended BASIC

CHAPTER

- The program at the right illustrates a
i use of the FOR-TO-STEP statement.
There are three FOR-NEXT loops,
with control-variables of CHAR,

¥ ROW, and COLUMN,

>100 CALL CLEAR

>110 D=0

»120 FOR CHAR=33 70 63 STIP 3
0

»130 FOR ROW=1+4D 70 21+D 3TEP
4

>140 FOR COLUMN=1+D TC 294D 8
TEP 4

>150 CALL VCHAR(ROW,COLUMN,CH
fR)

>160 NEXT COLUMN

>170 NEXT ROW

>180 D=2

>190 NEXT CHAR

>200 GCTO 200
(Press SHIFTC to stop the
program. |

T! Extended BASIC

87



GCHAR subprogram

Format
CALL GCHAR(row,coiumn.numeric-variable)

Description

The GCHAR subprogram reads a character from anywhere on the display
screen. The computer returns in numeric-variable the ASCII code for the
character in the position described by row and column.

Row and column are numeric expressicns. A vaiue of 1 for row indicates the
top of the screen. A value of 1 for the column indicates the left side of the
screen. The screen can be thought of as a grid as shown below.

COLUMNS
o 8 10 12 14 16 1B 20 22 4 26 8 30 32

4
sts b b o dbatbastbarbaed i baxbasd a7 d 20 b3

2
22—
23
24 —

Examples

CALL GCHAR(12.16,X) assigns (o X
the ASCII code of the character that
is in row 12, column 16.

CALL GCHARR.C K) puts inio X the
ASCII code of 1he character that is in
row R, column C.

>100 CALL GCHAR(12,16,X)

>100 CALL GCHAR(R,C,X)

88 TI Exiended BASIC

CHAPTER

Erormat
t GOSUB line-number
i GO SUB line-number

E Description

£ The GOSUB statement allows transfer te a subroutine. When executed,

| contro; is transierred to line-number and that statement and any following

f (which may include any statements, including GOTO statements and other

[ GOSUB statements) are executed. When a RETURN statement is

# encountered, control is returned to the next statement following the GOSUB
} statement. Subroutines are most useful when the same action is (o be

§ performed in different parts of a program. See also ON...GOSUB. Subroutines

lin T1 Extended BASIC may call themselves,

k GOSUB 200 translers control to »100 GOSUB 200

b statement 200. That statement and

E the ones up to RETURN are

i executed, and then control returns to
the statement after the calling

: statement.

TI Extended BAS.C

89



GOSUB

Program

The program on the right illustrates
a use of GOSUB. The subroutine at
line 260 figures the factorial of the
value of NUMB. The whole program
figures the solution to tke equation
NUMB = —_XI

Y (X-Y)
where the exclamation point means
factorial. This formula is used to
figure certain prebabilities. For
instance, if you enter X as 52 and Y
as 3. you'll find the number of
possible five card poker hands.

>100 CALL CLEAR

>110 INPUT "ENTER X AND Y: ":
XY

>120 IF X<Y THEN 110

>130 IF X>69 OR Y>69 THEN 110

>140 NUMB=X

>150 GOSUB 260

>160 NUMERATOR=NUMB

>170 NUMB=Y

>180 GOSUB 260

>190 DENOMINATOR=NUMB

>200 NUMB=X-Y

>210 GOSUB 260

>220 DENOMINATOR=DENCMINATOR*
NUMB

>230 NUME=NUMERATOR/DENCHMINAT
CR

2240 PRINT “NUMBLR IS™;NUMB

>250 STOF

>260 REM FIGURE FACTORTAL

>270 IF NUMB<O THEN PRINT “NE
GATIVE" :: GOTOQ 110

>280 IF NUMB<2 THEN NUMB=1 ::
GOTO 330

»>290 MULT=NUMB-1

>300 NUMB=NUMB%*MULT

>310 MULT=MULT-1

»320 IF MULT>1 THEN 300

>330 RETURN

CHAPTER

BOTO line-number
O TO line-number

Description

Fhe GOTO statement allows you to transfer control unconditionally to
nother line within a program. When a GOTO statement is executed, control
bs passed to the first statemnent on the line specified bty line-number.

e GOTO statement should not be used to transfer control into

>100 REM ADD 1 THROUGH 100
>110 ANSWER=0

>120 NUMB=L

>130 ANSWER=ANSWER+NUMB
>140 NUMB=NUMB+1

>150 IF NUMB>100 THEN 170
>160 GOTC 13C

>170 PRINT “THE ANSWER IS';AN
SVER

>RUN

THE ANSWER IS 5050

Mhe program at the right shows the
lise of GOTO in line 160. Anytime
that line is reached the program
pxecutes line 130 next and proceeds
rom that new point.

90

Tl Extended BASIC

| T1 Extended BASIC 91




HCHAR subprogram

Format
CALL HCHAR{row,column.character-code {,repetition] )

Description

The HCHAR subprogram displays a character anywhere on the display
screen and optionally repeats it horizontally. The character with the ASCH
value of character-code is placed in the position described by row and
column and :s repeated horizontally repetition times.

A value of 1 for row indicates the top of the screen. A value of 24 is the
bottom of the screen. A value of 1 for column indicates the left side of the
screen, A value of 32 is the right side of the screen. The screen can be
thought of as a grid as shown below.

COLUMNS

4 6 B 10 12 14 1o 18 20 22 24 26 28 30 32
abstrdboantizbisbhrbwlabalbastalelnd

16—

18—
19
21—
21
22—
23
24—~

% CHAR SUBPROGRAM

§x

CHAPTER

4

tgxamples

§'CALL HCHAR(12.16.33) places

fcharacter 33 (an exclamation point)

%in row 12, column 186.
¥
‘,CALL HCHAR(1.1,ASC(*""),768)

gplaces an exclamation peint in row
$1, column 1. and repeats it 768
ftimes, which fills the screen.

BCALL HCHAR(R.C.K.T) places the
haracter with an ASCII code

4]
i

Srolumn C and repeats it T times.

92 TI Extended BASIC

ppecified by the value of K in row R,

>100 CALL HCHAR(:2,16,33)

5100 CALL HCHAR(L,1,ASC("!"),
768}

5100 CALL HCHAR(R,C,K,T)

i T1 Extended BASIC

93



IF THEN [ELSE]

Format

IF relational-expression THEN line-numberl [ELSE line-number2|
IF relational-expresston THEN statementl [ELSE statement2)|

IF numeric-expression THEN line-numberl [ELSE line-number2)
IF numeric-expression THEN statementl [ELSE staternent2]

Description

The IF-THEN-ELSE statement allows you to transfer control to line-number!
or to perform statementl if relational-expression is true or if nwneric-
expression is not equal to zero. Otherwise control passes (o the next

statement, or optionally to line-number2

or statement2,

Staternentl and staterment2 may each be several statements long, separated
by the statement separator symbol, They are only executed if the clause
immediately before them is executed. The IF-THEN-ELSE statement cannot
contain DATA, DEF, DIM, FOR, NEXT, OPTION BASE, SUB, or SUBEND.

Examples

IF X>5 THEN GOSUB 300 ELSE

X =X +5 operates as follows: If X is
greater than 5, then GOSUB 300 is
executed. When the subroutine is
ended, control returns to the line
following this line. If X is 5 or less, X
is set equal 10 X + 5 and control
passes to the next line.

IF Q@ THEN C=C+ 1:GOTO
500:ELSE L =L/C::GOTO 300
operates as follows: If G is not zero.
then C is set equal to C+ 1 and
control is transferred to line 500. If Q
is zero, then L is set equal to L/C and
control is transferred to line 300.

I[F A>3 THEN 300 ELSE A =0::
GOTO 10 operates as follows: If A is
greater than 3, then control is
transferred to line 300. Otherwise, A
is reset to zero and control is
transferred to line 10,

>100 IF X>5 THEN GOSUB 300 EL
SE X=X+5

>100 IF Q THEN C=C+21::GOTQO 50
0::ELSE L=L/C::GOTO 300

>100 IF A>3 THEN 300 ELSE A=(
G070 10

CHAPTER

JCOUNT is incremented by 1. a
inessage is displayed, and control is
Yransferred to line 300.

EPAY = HOURS* WAGE ELSE

PAY = HOURS*WAGE + .5*WAG-

W (HOURS-40) : OT =1 operates as
f ollows: If HOURS is less than or
fequal to 40. then PAY is set equa to
JHOURS* WAGE and control passes to
Ethe next linc. If HOURS is greater

. than 40 then PAY is set equal to
EHOURS* WAGE + 5*WAGE*(HO-
JURS-40). OT is set equal to 1, and
ontrol passes to the next line.

fIF A=1THEN{F B=2THEN C=3

i LSE D=4 ELSE E =5 operates as
ffollows: I A is not equal 0 1, then E
is sel equal to 5 and control passes Lo
Fthe next line. If A is equal to 1 and B
H1s not equal to 2, then D is set equal
Fto 4 and control passes to the next
fline. If A is equal to 1 and B is equal
k1o 2, then C is set equal o 3 and
kcontrol passes (o the nex: line,

>100 IF 43="Y" THEN COUNT=CQU
NT+1::DISPLAY AT(24,1): ‘HERE
WE GO AGAIN!'"::C0TC 300

»>100 IF HOURS<=40 THEN PAY=HO
URS*WAGE ELSE PAY=HOURS*WAGE
+.5%WAGE* (HOURS-40) :: 0T=1

>100 IF A=1 THEN IF B=2 THEN
o=3 ELSE D=4 EL3E E=5

94

TI Extended BASIC

Tl Extended BASIC

95



IF THEN [ELSE]

Program '

The program on the right iilustrates
a use of IF-THEN-ELSE. It accepts up
to 1000 numbers and then prints
them in order from smaliest to
largest.

>100 CALL CLEAR

>110 DIM VALUE(1000)

»>120 PRINT ~ENTER VALUES TO B
E SCRTED.':"ENTER '§999' TO
END ENTRY."

»>130 FOR COUNT=1 TO 1000

>14C INPUT VALUE(COUNT)

>150 IF VALUE(COUNT)=9999 THE
N 170

>160 NEXT COUNT

>170 COUNT=COUNT-1

>180 PRINT “SORTING."

»190 FOR SORT1=1 TO COUNT-1

>200 FOR SORT2=SORT1+1 TC COU
NT

>210 IF VALUE(SORT1)>VALUE(SD
RT2)THEN TEMP=VALUE(SORT1):

VAIUE(SORT1)=VALUE(SORTR2) ::
VALUE(SORT2)=TEMP

>220 NEXT SORTZ2

>230 NEXT SCRT1

>240 FOR SORTED=1 TC COUNT

»250 PRINT VALUE(SCRTED)

>260 NEXT SCRTED

CHAPTER

-'The IMAGE statement specifics the format in which numbers are printed or
¢ displayed when the USING clause is present in PRINT or DISPLAY. No action

i{-*is taken when the IMAGE statement is encourntered during program

;’ execution. The IMAGE statemen: must be the only statement on a line. The
¢~ following description of format-string also applies to the use of an explicil
: image alter the USING clause in PRINT...USING and DISPLAY...USING.

; Format-string must contain 254 or fewer characters and may be made up of
 any characters. They are treated as follows:

! Pound signs (¥) are replaced by the print-list values given in PRINT...USING
-~ or DISPLAY...USING. One pound sign must be allowed for each digit of the
- value and one for the negative sign if it is present, or for each character that
* is to be printed. If there is not enough rocm to print the number or

96

Tl Extended BASIU

characters in the space allowed. =ach pound sign is replaced with an asterisk
(*). If more numbers are after the decimal place than are allowed by the
number of pound signs after the decimal place in the IMAGE statement, the
number is rounded to fit. If there are fewer non-numeric characters than are
allowed for in the print string, the value printed will have blanks for the
extra characters.

To indicale that a number is to be given In scientific notation, circumflexes
(A) must be given for the E and power numbers. There must be four or five
circumflexes, and 10 or [ewer characters {minus sign, pound signs, and
decimal point) when using the E format.

The decimal point separates the whole and fractional portions of numbers,
and is printed where it appears in the IMAGE statement.

All other letters, numbers, and characters are printed exactly as they appear
in the IMAGE statement.

Format-string may be enclosed in quotation marks. If it is not enclosed in
quotaiion marks, leading and trailing spaces are ignored. However. when
used directly in PRINT...USING or DISPLAY...USING. it must be enclosed in
quotaton marks.

Each IMAGE slatement may have space for many images. separated by any
character except a decimal point. Il more values are given (n the
PRINT...USING or DISPLAY...USING statement than there are images, then
the images are reused, starting at the beginning o7 the statement.

If you wish. you may put formai-string directly in the PRINT__USING or
DISPLAY...USING statement immediately following USING. However, if a

T! Extended BASIC 97




IMAGE

Jormat-string is used cften, it is more efficient to refer to an IMAGE

statement.

Examples

IMAGE $®### #&# allows printing of
any number from - 999.999 to
9999.999. The following show how
some sample values will be printed
or displayed.

Value Appearance
-999999 $-999999
-34.5 § -34.500
0 ] 0.000
12.4565 $ 12457
6312.9991 5 6312.999
99999999 S-tﬁtitt!

IMAGE THE ANSWERS ARE ###
AND ## ## allows printing of two
numbers. The first may be from -99
to 999 and the second may be from
-9.99 o 99.99. The following show
how some sample values will be
printed or displayed.

Values
~-99 -9.99

Appearance

THE ANSWERS
ARE -99 AND
~-9.99

-7 -3.459 THE ANSWERS
ARE -7 AND
-3.46

THE ANSWERS
ARE 0 AND .00
THE ANSWERS
ARE 15 AND 12.75
THE ANSWERS
ARE 795 AND
LR N N

THE ANSWERS
ARE *** AND
64.70

148 12.75

795 852

-984 64.7

>100 IMAGE SHEWH . ##H
>110 PRINT USING 100:A

»>200 IMAGE THE ANSWERS ARE #
## AND ##.4#
>210 PRINT USING 200:A,B

98

Tl Extended BASIC

BimaGE

CHAPTER

& IMAGE DEAR ####_allows printing
£ a four-character string. The following
' show how some sample values will

. be printed or displayed.

. Values

Appearance
{ JOHN DEAR JOHN,
. TOM DEAR TOM ,
RALPH DEAR ****,
Programs

The program on the right illustrates
a use of IMAGE, [t reads and prints
seven numbers and their total. Lines
110 and 120 se. up the images. They
are the same except for the dollar

< aign In line 110. To keep the blank

~ space where the dollar sign was, the

¢ format-string in line 120 is enclosed
in quoiation marks.

o)

)

4
4

Line 180 prints the values using the
" IMAGE statements.

Line 210 shows that the format can
be put directly in the PRINT.. USING
statement,

The amounts are printed with the
decimal points lined up.

>300 IMAGE DEAR ####,
>310 PRINT USING 300:X$

>100
»110
>120

CALZ CLEAR
IMAGE BHAHKE. F#
IMAGE - #HR¥.##"

>130 DATA 233.45,-147.95,8.4,
37.263,-51.299,35.2,464

>140
>150
>160
»170

>180
110
120
>1G0
>200

TOTAL=0

FCR A=1 TC 7

READ AMOUNT
TOTAL=TOTAL+AMOUNT

IF A=1 THEN PRINT USING

AMOUNT
NEXT A
PRINT

:AMOUNT ELSE PRINT USING

>210 PRINT USINC “3####.##:T
OTAL

>RUN

§ 233.45
~-147.95

8.40

37.26
-51.30
85.20
464,00

$ 629.06

TI Extended BASIC

89



IMAGE

The program at the right shows the
effect of using more values in the
PRINT...USING staternent than there
are images in the IMAGE statement.

>100 IMAGE #K# . ##, HHH #
>110 PRINT USING 100:50.34,50
.34,37.26,37.26

>RUN
50.34, 50.3
37.26, 37.3

INIT subprogram i

g Format

j CALL INIT

' Description

| The INIT subprogram is used, along with LINK, LOAD, and PEEK, lo access
" assembly language subprograms. The INIT subprogram checks to see that

t the Memory Expansion is connected. prepares the computer to run assembly
f language programs, and loads a set of supporting routines into the Memory
i Expansion.

4.

f, The INIT subprogram must be called before LOAD and LINK are called. INIT
h removes any previously loaded subprograms from the Memory Expansion.

f The effects of INIT last until the Memory Expansien is turned off and does

f not need to be called from each program that is using the subprogram

P involved.

'

If the Memory Expansion is not attached, a syntax error is given.

100

Tl Extended BASIC

TI Extended BASK® 101




INPUT

Format
INPUT linput-prompt:] variable-tist

(For information on using the INPUT statement with a file, see INPUT with
files.)

Description

This form of the INPUT statement is used when entering data from the
keyboard. The INPUT statermnenl suspends program execution untl data is
entered trom the keyboard. The optional input-prompt may display on the
screen what data is expected.

Variable-list contains the variables (scalar or array elementis: numeric or
string) which are assigned values when the INPUT statement is executed.
The variables are separated by commas. If a value in variabie-list 1s input. it
may later be used as a subscript in the same INPUT statement.

When inputting string values. they may optionally be enclosed in quotation
marks. However, if you wish 10 have leading or trailing blanks or commas.
the entire string must be enclosed in quotation marks. If more thanone
value is to be input, separate the values (o be input by commas.

Options

The optional input-prompt is a string expression. It must be followed by a
colon. It is displayed on the screen when the INPUT statement is executed. If
there is no input-prompt, a question mark and space are displayed to
indicate that input is expected. If there is an input-prompt. it takes the place
of the question mark and space.

Examples

INPLT X allows the input of a
number.

>100 INPUT X

INPUT X$.Y allows the input of a
string and a number.

INPUT "ENTER TWO NUMBERS:
*:A.B prints the prompt ENTER
TWO NUMBERS and then allows the
entry of two numbers.

>100 INPUT X$,Y

>100 INPUT “ENTER TWO NUMBERS
" ALB

INPUT A(J)J first evaluates the
subscript of A and then accepts data
into that subscript of A. Then a value
is accepted into J.

»100 INPUT A(J),J

102 TI Extencted BASIC

INPUT

CHAPTER

e

| INPUT J.AiJ) first accepts data into J
"and then accepis data into the Jth
% glement cf the array A.

A

&

% program

;‘-;' The program on the right illustrates
' a use of INPUT from the keyboard.
Lines 110 through 140 allow the

. persorl using the program (o enter
data, as requested with the input-
1 promps.

o]

SRR e G g

Lines 170 through 250 construct a
letter based on the input.

S

P L e R I

>100 INPUT J,A(J]

>100 CALL CLEAR

>110 INPUT “ENTER YOUR FIRST
NAME: ":FNAME$

>120 INPUT “ENTER YOUR LAST N
AME: ":LNAMNE$

>130 INPUT “ENTER A THREE DIG
1T NUMBER: "":DOLLARS

5140 INPUT “ENTER A TWO DIGIT

NUMBER: ':CENTS

>150 IMAGE OF $#H#.## AND TiA
T IF YOU

>160 CALL CLEAR

>173 PRINT “DEAR “;FNAMES;:" "

>180 PRINT * THIS 15 TC R
EMIND YOU"

>190 PRINT “THAT YOU OWE US T
HE AMOUNT"

>200 PRINT USING 15C:DOLLARS+
CENTS/100

»210 PRINT "DO NOT PAY US, YO
U WILL SOCN™

220 PRINT “RECEIVE A LETTER
FECM DUR"

»230 PRINT "ATTORNEY, ADDRESS
ED TQ"

240 PRINT FNAME$;" ~;LNAMEP;
e

5250 PRINT TAB(15);"SINCERELY
,73 ¢ :TAB(15);"L. DUN YOU":

>260 GOTO 260
{Press SHIFT C to stop the
program, )

TI Extended BASIC

103



INPUT (with files)

Format
INPUT #file-number [.REC record-number| :variable-list

(For informaticn on using the INPUT statement o enter data from the
keybcard, see INPUT.)

Description

The INPUT statement, when used with files. allows you to read data from
files. The INPUT statemnent can only be used with files opened in INPUT or

UPD}(\jTE mode. DISPLAY files may not have over 160 characters in each
record.

File-number and vartable-list must be included in the INPUT statement.
Record-number may optionally be included when reading random access
(RELATIVE]) files from diskettes.

All statements which refer 1o files do so with a file-number from O through
255. File-number is assigned to a particular file by the OPEN statement. File
numberQ is dedicated to the keyhoard and screen of the computer. It cannat
be used for other files and is always open. File-number is entered as a
number sign (# followed by a numeric expression that, when rounded to the

nearest integer, is a number from 0 (o 255, and is the number of a file that is
open.

Variable-list is the list of variables into which you want the data from the file
to‘ be placed. It consists of string or numeric variables separated by commas
with an optional trailing comma.

Options

You can optionally specify the number of the record that you want (o read as
record-number. It can only be specified fcr diskette files which have been
opened as RELATIVE. The first record of a file is number O.

104 - "
I'f Extended BASIC

LINPUT (with files)

CHAPTER

| Examples
b INPUT #1:X$ puts into X8 the next
i value available in the file that was

opened as #1.

L INPUT #23:X,A.LLS puts into X. A.
" and LLS the next three values from
the file -hat was opened as #23.

| INPUT #11,REC 44:TAX puts into
i TAX the first value of record number
‘ 44 of the file that was opened as #11.

. INPUT #3:A.B.C. puts into A. B, and
§ C the next three values from the file

that was opened as #3. The comma

after C creales a pending input
® condition. When the next INPUT or

LINPUT statement using this file is
performed. one of the following
actions occurs: I the next INPUT or

. LINPUT statement has no REC
$ clause, the computer uses the data

beginning where the previous INFUT

b statement stopped. If the next INPUT

or LINPUT statement includes a REC
clause, the computer terminates the
pending input condition and reads
the specified record.

>100 INPUT #1:X%

>100 INPUT #23:X,A,LL%

>L00 INPUT #11,REC 44:TAX

>100 INPUT #3:4,E,C,

TI Extended BASIC

105



INPUT (with files)

Program

The program at the right illustrates a
use of the INPUT statement. It opens
a file on the cassette recorder and
writes B records on the file. It then
goes back and reads the records and
displays them on the screen,

>100 CPEN #1:"CS1",SEQUENTIAL
, INTERNAL, OUTPUT, FIXED &4
>110 FOR A=1 T0 5
>120 PRINT #1:"THIS IS RECORD
A
>130 NEXT A
>140 CLOSE #1
>150 CALL CLEAR
>160 OPEN #1:°CS1",SEGUENTIAL
, INTE3NAL, INPUT,FIXED 64
>170 FOR B=1 TO 5
>180 INPUT #1:A%,C
>190 DISPLAY AT{B,1):4$;C
>200 NZXT B
>210 CLOSE #1
>RUN
* REWIND CASSETTE TAFE CS1
THEN “RESS ENTER
* PRESS CASSETTE RECCRD (S1
THEN PRESS ENTER
¥ PRESS CASSETTE STQP €5z
THEN PRESS ENTER
¥ REWIND CASSETTE TAPE (51
THEN PRESS ENTER
* PRESS CASSETTE PLAY Cs1
THEN PRESS ENTER
THIS 1S RECORD 1
THIS 1S RECORD 2
THIS 1S RECORD 3
THIS IS RECORD 4
THIS IS RECORD 5
* PRESS CASSETTE STOP £s1
THEX PRESS ENTER

Sce the Disk Memory System manual for instrucions on using diskettes,

106

T1 Extended BASIC

INT

CHAPTER

Format
1NT(numeric-expression)

pescription

The INT function returns the greatest Integer less than or equal to numertc.

expresslort.

Examples
PRINT INT(3.4) prints 3.

X = INT(3.9) sets X equal to 3.

P = INT(3.9999999999) sets P equal
to 3.

DISPLAY AT{3,7:INT{4.0) displays 4
at the third row, seventh column.

N =INT(-3.9) sets N equal to - 4.

K =INT{ - 3.0000001) sets K equal to
-4,

100 PRINT INT(3.4)
100 X=INT{3.90)
5100 P=INT(3.9999999995)

>100 DISPLAY A7(3,7):INT(4.0)

>100 N=INT(-3.9)
>100 K=INT(-3.0000001)

TI Extended BASIC

107



JOYST subprogram

Format
CALL JOYST(key-unit.x-return y-returni
Description

The_ ;JOYST su?program returns data into x-refurn and y-return based on the
E:snt on of the joystick in the Wired Remote Controller (available
parately) labeled key-unit. Key-unit is a numeric expression with a value of

1 tkllougll 4. Ihe Ua]ues 1 and 2 re Uystlc S a VaI € Ild 4 re
a

}Ic‘)hfs:t;ralluv’ershreturned In x-return and y-return depend on the position of the
ay; (ih - The values returned are shown below. The first value in the
parentheses is placed in x-return. The second value is placed in y-return

(0.4)
(-4.9)

(-4.0)

(-4.-4}

0.-4

Example

CALL JOYST(1.X.,Y) returns values
in X ard Y according to the position
of joystick number 1.

>100 CALL JOYST(1,X,Y)

Program

The program on the right illustrates
a use of the JOYST subprogram. [t

>100 CALL CLEAR
>110 CALL SPRITE(#1,33,5,96,1

creates a sprite and then moves it 28)

Iaround according to the input from a >120 CALL JQYST(1,X,Y)

Jjoystick. >130 CALL MOTION(#lz—‘f,X)
>140 GOTO 120
(Press SHIFT C to stop the
srogram.)

108

TI Extended BASIC

s

CHAPTER

KEY subprogram

Format
CALL KEY[key-unit.retum-uartable.stazus-uariable)

Description

The KEY subprogram assigns the code of the key pressed to return-variable.
The value assigned depends on the key-urnit specified. If key-unit is O, input
is taken [rom the entire keyboard, and the value placed in return-variable is
the ASCII code of the key pressed. If no key is pressed. returri-variable is set
equal to - 1. See Appendix C for a list of the ASCII codes.

If key unit is 1, input is laken from the left side of the keyboard, If key-unit is
2. input is taken from the right side of tke keyboard. The nossible values
placed in retun-vartable are given in Appendix J. Values ot 3, 4. and 5 are
reserved for possible future uses.

Status-variable indicates whether a key has been pressed. A value of 1
means a new key was pressed since the last CALL KEY was executed. A
value of — 1 means the same key was pressed as in the previous CALL KEY.
A value of O means no key was pressed.

Example

CALL KEY(0,K.8) returns in K the
ASCI code of any key pressed on the
keyboard, and in S a value indicating
whether any key was pressed,

>100 CALL KEY(C,K,S)

Program
The program on the right illustrates >100 CALL CLEAE
a usc of the KEY subprogram. It »110 CALL SPRITE(#1,33,5,96,1
creates a spritz and then moves it 28)
around according to the input from >120 CALL KEY(1,K,S)
the left side of the kevboard. >130 IF $=0 THEN 120
Nole that line 130 returns to line 120 >140 IF K=5 THIN Y=-4
if no key has been pressed. >150 IF K=0 THEN Y=4
160 IF K=2 THEN X=-4
>170 IF K=3 THEN X=4
>180 IF K=1 THEN X,Y=0
>190 IF X»95 THEN X,Y=0
»200 CALL MOTION(#1,Y,X)
»>210 GOTC 120
{(Press SHIFT C to stop the
program. )

T1 Extended BASIC 109



LEN

Format
LEN(string-expression)

Description

The LEN function returns the number of characiers in string-expression. A

space counts as a character.
Examples
PRINT LEN("ABCDE"") prints 5.

X=LEN("THIS IS A SENTENCE."})
sets X equal to 19.

DISPLAY LEN("") displays 0.
DISPLAY LEN(" "} displays 1.

>100 PRINT LEN(“ABCDE')

>100 X=LEN{"THIS IS A SENIENC
E.")

>100 DISPIAY LEN('")
>100 DISPLAY LEN(" )

110

TI Extended BASIC

LET

CHAPTER

Format

[LET] numeric-variable [.numericvarlable. ... | =nnumeric-expression
{LET)] string-variable [.string-variable. ... | = string-expression
Description

The LET statement assigns the value of an expression to the specified
vartable(s). The computer evaluates the expression on the right and puts its
value into the variable(s) on the left. Il more than one variabie is on the left,
they are separated with commas. The LET is optional, and is omitted in the
examples in this manual. All subscripts in the variable(s) on the left are
evaluated before any assignments are made.

You may use relational and logical operators in nurneric-expression. If the
relation or logical value is true, numeric-variable is assigned a valueof — 1. 1If
the relation or logical value is false. numeric-variable is assigned a value of

0.

Examples
T =4 puls the value 4 into T.

X.Y.Z =12.4 puts the value 12.4 into
X, Y. and Z.

A=3<5puts -] into A since it is
true that 3 is less than 5.

B=12<7 puts 0into B since it is not
true that 12 is less than 7.

LA(I)= 3 puts 3 into A{l) with
whatever value 1 had before, and
then puts 3 into L.

L$,D8.BS="B" puts "B inta LS,
DS, and BS.

>100 T=4
>100 X,Y,7=12.4

>100 A=3<5

>100 B=12<7

>100 1,4(1)=3

>100 L§,D$,B3="B

Tl Extended BASIC

111



LINK subprogram

Format
CALL LINK(subprogram-name |argument-list] )
Description

The LINK subprogram is used. along with INIT, LOAD. and PEEK. o access
assembly language subprograms. The LINK subprogram passes conirol and
optionally, a list of parameters frem a T1 Extended BASIC program 1o an ‘
assembly language subprogram.

Subprogram-name is the name of the subprogram to be called. It must have
been previously loaded into the Memory Expansion with the CALL LOAD
command or statement. Argument-list is a list of variables and expressions
as required by the specific assembly language subprogram being called.

112
TI Extended BASIC

|

CHAPTER

LINPUT

Format
LINPUT [ [#file-number] . REC record-number] :| string-variable

LINPUT [inpui-prompt] string-variable

Description

The LINPUT staternent allows the assignment of an entire line, file record, or
(if there is a pending input record) the remaining portion of a file record into
string-variable. No editing is performed on whalis input. 5o commas.
leading and trailing blanks. semmicolons, colons, and quotation marks are
placed in string-variable as they are given.

Options

A #file-number may be specified. If the file is in RELATIVE format. a spectiic
record may be specified with REC. The file must be a DISPLAY-type file. If no
file is specified, an input-promgt may be displayed prior to accepting input
from Lhe keybpard.

Examples
LINPUT L§ assigns into L$ anything
typed belore ENTER is pressed.

>100 LINPUT L$

LINPUT "NAME: ":NMS displays >100 LINPUT ~NAME: “NM$
NAME: and assigns into NM8
anything typed before ENTER is

pressed.

LINPUT #1,REC M:L8(M} assigns >100 LINPUT #1,REC M:13(M)
into LS(M) the value that was in
record M of the file that was opened

as # 1.

Program

The program on the right illustrates
the use of LINPUT. It reads a
previously existing file and displays
only the lines that contain the word
“THE"'.

5100 OPEN #1:'DSK1.TEXT1',INP
UT,FIXED B0,DISPLAY

110 IF EQF(1) THEN CiOSE #1
:: STOP

>120 LINPUT #1:A%

>130 I1=POS(A$, THE ,1)

5140 17 I<>0 THEN PRINT A%

>150 GDTO 110

TI Extended BASIC

113



LIST

Fermat

LIST ["device-name':] [line-number|

LIST [“device-name™:| [start-line-number] - |end-line-number]
Description

The LIST command allows you to display program lines. If LIST is entered
with no numbers following it. the entire program in memory is listed. If a
number follows LIST, the tine with that number is Lsted. [ a number
followed by a hyphen follows LIST. that line and all lines following it are
listed. If a number preceeded by a hyphen follows LIST. all lines preceeding

it and thal line are listed. If two numbers separated by a hyphen follow LIST,

the indicated lines and all lines between them are listed.

By pressing and holding a key until TI Extended BASIC responds. vou may
temporarily halt a listing so that you can ook at it on the screen. Press any
key again to restart the listing. Similarly. pressing SHIFT € (CLEAR) stops the
listing.

Options

The listing normally is displayed on the screen. If you wish. you can instead
direct the list to somce other device, such as the optional thermal printer or
R5232 interface, by specitying device-name.

Examples

LIST lists the entire program in >LIST
memory on the display screen.

LIST 100 lists linc 100. >LIST 100
LIST 100- lists line 100 and all lines >LIST 100-
after it.

LIST -200 lists all lines up to and >LIST -200

including line 200,

LIST 100-200 lists all lines from 100
through 200.

>L1ST 100-200

LIST "TP" lists the entirc program >LIST TP~

on the optional thermal printer.

LIST “TP": -200 lists all lines up to
and including line 200 on he
optional thermal printer.

>LI1ST TP -200

114 TI Extended BASIC

i

~ LOAD subprogram

A——-

CHAPTER

o —

.. format

CALL LOAD{ access-name’" |,address.bytel [. ...] Jile-fteld, ...] )
pescription

. The LOAD subprogram is used, along with INIT, LINK, and PEEK, to access
 ggsembly language subprograms. The LOAD subprogram lpads an assembly
% language object lle or direct data into the Memeory Expansion for later

» pxecution using the LINK statement.

" The LOAD subprogram can specify one or more files from which to load

. object data or lists of direct load data, which consists of an address followed

(R

£

o
13

g

S s

E

p i Pt e T

py data bytes. The address and data bytes are separated by commas. Direct

 Joad data must be separated by file-field, which is & string expression

- specifying a file from which to load assembly language abject code. File-field
" may be a null string when it is used merely to separate direct load data

. fields. Use of the LOAD subprogram with incorrect values can cause the

computer to cease to function and require turning it off and back on.

Assernbly language subprogram names (see LINK) are included in the file.

Ti Extended BASIC

115



LOCATE subprogram

Format

CALL LOCATE(#spritenumber dot-row.dot-column {....] )

Description

The LOCATE subprogram is used to change the location of the given sprite(s)
to the given dot-row(s) and dot-columnfs,. Dot-row and dot-column are
numbered consecutively slarting with 1 in the upper left hand corner of the
screen. Dot-row can be from 1 to 192 and dot-column can be from 1 to 256.
{Actually dot-rour can go up to 256, but the locatiens from 193 through 256
are ofl the bottom of the screen.) The location of the sprite is the upper left
hand corner of the character(s) which define it.

Program

The program on the right illustrates
the use of the LOCATE subprogram.
Line 110 creates a sprite as a fairly
quickly moving red exc.amation
point.

Line 140 locates the sprite at a
location randoraly chosen in lines
120 and 130.

Line 1530 repeais the process.,

>100 CALL CLEAR

»110 CAIL SPRITE({#1,33,7,1,1,

25,25)

>120 YLCO=INT{RND*150+1:
>130 XLCC=INT(RND*200+1
>140 CALL LOCATE(#1,YLOC,XLOC

)
>150 GOTO 120

(Fress SHIFTC to stop the

program, }

Also see the third example of the SPRITE subprogram.

T Extended BASIC

LOG

CHAPTER

Format
LOG(humericexpression)

Description

The LOG funclion returns the natural logarithm of numeric-expression
where numeric-expression is greater than zero. The LOG function is the

& inverse of the EXP function.

Examples
%' PRINT LOG(3.4) prints the natural
logarithm of 3.4 which is

1.223775431622.

f X - LOG(EXP(7.2)) sets X equal to
8 the natural logarithm of e raised to
the 7.2 power, which is 7.2.

S = LOG(SQRI(T)) sets 5 equal to the
natural logarithm of the square root
of the value of T.

Program

. The program at the righl returns the

logarithm of any positive number to
any base.

>100 PRINT LOG(3.4)

>100 X=LOG(EXP(7.2))

>100 S=LOG(SQR(T))

>»100 CALL CLEAR
>110 INPUT “BASE: :B
>120 IF B<=1 TKEN 110
>130 INPUT “NUMBER: "':N
>140 IF N<=0 TEEN 130
>150 LG=LOG(N)/LOG(B)
>160 PRINT ~LOG BASE;E;"QF";
N; IS LG
>170 GOTO 110
(Press SHIFT C to stop the
program. )

TI Extended BASIC

117



MAGNIFY subprogram

Format
CALL MAGNIFY(magniftcation-factor)

Description

The MAGNIFY subprogram allows you to specify the size of sprites and how
many characters make up each sprite. All sprites are affected by MAGNIFY.
Magnification-factors may be 1. 2, 3, or 4. If no CALL MAGNIFY is in a
program. the default magnification-factor is 1.

A magnification-factor of 1 causes all sprites to be single size and
unmagnilied. This means that each sprite is defined only by the character
specified when the sprite was created and takes up just one character
position on the screen.

r Y

.~ J

A magnificatton-factor of 2 causes all sprites (o be single size and magnified.
This means that each sprite is defined only by the character specitfied when it
was created, but takes up four character positions on the screen. Each dot
position in the character specified expands to occupy four dot positions on
ae s;:r;:len. The expanslon from a magnification-factor of 1 is down and to

€ right,

é Y

118 Tl Extended BASIC

;
|

- CHAPTER
MAGNIFY subprogram

A magnification-fuactor ot 3 causes all sgrites to be double size and
unmagnified. This means that each sprite is defined by four character

ositions that include the character specified. The first character is the one
specified when the sprite was created if its number is evenly divisible by
four, or the next smallest number that is evenly divisible by lour. That
character is the upper left quarter of the sprite. The next character is the
lower left quarter of the sprite. The next character is the upper right quarter
of the sprite. The final character is the lower right quarter of the sprite. The
characier specified when the sprite was created is one of the four that makes
up the sprite. The sprite occupics lour characler positions on the screen.

f A

e J
A magnification-factor of 4 causes all sprites to be double size and
magnificd. This means that each sprite is defined by four character posilions
that :nclude the character specified. The first character is the one specified
when the sprite was created if its number is evenly divisible by four. or the
next smallest number that is evenly divisible by four. That character is the
upper left quarter of the sprite. The next character is the lower left quarter of

. the sprite. The next character is the upper right quarter of the sprite. The

final character is the lower right quarter of the sprite. The character specified
when the sprite was created is one of the four thal makes up the sprite. The
sprite occupies sixteen character positions on the screen. The expansion
from a magnification-jactor of 3 is down and to the right

r y

. J

Tl Exiended BASIC 119




MAGNIFY subprogram

Program

The following program illustrates a use of the MAGNIFY subprogram. When
it is run, a little ligure appears near the center of the screen. In a momen:, it

Eets to be twice as big. covering four character positions. In another moment,

it Is replaced by the upper left corner of a larger figure, still covering four
character positions. Then the full figure appears. covering sixteen charac:er
pos:tions. Finally it is reduced in size o four character positions.

>100 CALL CLEAR

>110 CALL CHAR(96,"1898FF3D3C
3CE404)

Line 120 sets up a sprite using >120 CALL SPRITE(#1,96,5,92,1
character 96. By dcfault the 24)

magnification factor is 1. >130 GOSUB 230

Line 140 changes the magnification >140 CALL MAGNIFY(2)

factor to 2. >150 GOSUB 230

Line 160 redefines character 96. >160 CALL CHAR{96, 'C1J3C3417F
Because the definition is 64 3FQ7070707077E7C40000080C0C0

Line 110 defincs character 96.

characters leng, it also defines 80FCFEERE3EOEOEQ60608606070")
characters 97, 98, and 99. >170 GOSUB 230
Line 180 changes the magnification >180 CALL MAGNIFY{4)
factor to 4. >190 GOSUB 230
Line 200 changes the magnification >200 CALL MAGNIFY(3)
factor to 3. >210 GOSUB 230
»>220 STOF
>230 REM DELAY
>240 FOH DELAY=1 TO 50
>250 NEXT DELAY
>260 FETURN
120 T1 Extended BASIC

AR AX CHAPTER
v 4

Format
MAXnumeric-express'onl.numeric-expressiond)

Description

The MAX function returns the larger of numeric-expressionl and numeric-
expression2. If they are equal, then their value is returned.

Examples

PRINT MAX(3.8) prinis 8.
F=MAX(3E12 1800000) scts F equal
to 3E12.

>100 PRINT MaX{3,8)
»100 F=MAX(3EL1Z, 1800000)

G=MAX(-12 -4) sets G equal to >100 G=MAX(-12,-4)

-4

L=MAX(A.B}scts L equal to 7 if A is
7andBis -5

>100 L=MAX(A,B)

Tl Extended BASIC 121



MERGE

Format
MERGE [] device-filename |

Description

The MERGE command merges lines in filename [rom the given device into
the program lines already in the computer's memory. If a line number in
filename duplicates a line number in the program already in memory. the
new line replaces the old line. Otherwise the lines are inserted in line number
order among the lincs already in memory. The MERGE command does not
clear breakpoints. Also, MERGE can only be used with diskettes.

NOTE: Files can only be mergad into memory il they were saved using the
MERGE option. Sec the SAVE command for mcre information.

Example

MERGE DSK1.5UB merges the
program SUB into the program
currently in memory.

Program

Il the program on the right is saved
on DSK1 as BOUNCE with the merge
option. it can be merged with
programs such as the one shown on
the next page.

>MERGE DSK1.SUB

>100 CALL CLEAR

>110 EANDOMIZE

140 DEF RND50=INT(RNO¥50-25)
>150 COSUB 10000

>10000 FOR aA=1 TO 20

>10010 QQ=RND50

>10020 LL=RND30

10030 CALL MOTION(#1,QQ,LL)
>10040 NEXT A4

»10050 RETURN

>SAVE “DSK1.BOUNCE",MERGE

MERGE

On the right is a program you can
put into the computer’'s memory.

Now merge BOUNCE with the ahove
program,

The program that results from
merging BOUNCE with the above
program is shcewn on the right,

Note that line 150 is from the
program that was merged, not from
the program that was in memory.

[ —

122

TI Extended BASIC

>120 CALL CHAR(36, 181B83CFFFF
3C1818")

>130 CALL SPRITZ(#1,96,7,92,1
28)

>150 GOSUB 500

>160 STOP

>MERGE 2SK1.BOUNCE

>LIST

>100 CALL CLEAR

>110 RANDOMIZE

>120 CALL CHAR(96,18183CFFFF
3C1818")

>130 CALL SPRITE(#1,96,7,92,1
28)

>140 DEF RND50=INT{RND¥50-25)
>15¢ GOSUB 10000

>160 STOP

>10000 FOR AA=1 TQ 20¢

>10010 QQ=RND30

>10020 LL=RND50

>10030 CALL MOTION(#1,Q49,LL)

>10040 NEXT AA

>10050 RETURN

T Extended BASIC

123



MIN

Format
MIN(numeric-expression ! .numeric-expression2)

Description
The MIN function returns the smaller of numeric-expressionl and numeric-
expression2. If they are equal, then their value is returned.

Examples

PRINT MAX3.8) prints 3. >100 PRINT MAX(3,8)

F = MIN{3E12,1800000) sets F equal >100 F=MIN(3E1Z2,1500000)

to 1800000.

G=MIN{ - 12, - 4) sets G equal to >100 G=MIN(-12,-4)

-12.

L=MVIN(A.B)sets L. equal to -5 it A >100 L=MIN(A,B)

is 7and B is - 5.

124 Tl Extended BASIC

MOTION subprogram

CHAPTER

Format

CALL MOTION #sprite-number, row-velocity.colurmn-velocity |....] ]

PDescription

The MOTION subprogram is used Lo specify the reuw-velocity and cclumn-
pelocity of a sprite. It both the row- and columri-velocities are zero, the sprite
{s stationary. A positive row-velocityy moves the sprite down and a negative
value moves it up. A positive column-velecity moves the sprite to the right
and a negative value moves it to the left. If both row-velocity and column-
pelocity are nonzero, the sprite moves smoothly at an angle in a direction

determined by the actual values.

The row- and column-velocities may be from - 128 to 127 A value close to
zero is very slow. A value far from zero is very fasi.. When a sprite comes to
the edge of the screen. il disappears and reappears in the corresponding

position on the other side of the screen.

Program

The program at the right illustrates a
use of the MOTION subprogram.
Line 110 creates a sprite.

Lines 120 and 130 set values for the
motion ot the sprite.

Line 140 displays the current values
of the motion of the sprite.

Line 150 sets the sprite in motion.

Lines 160 and 170 complete the
loops that set the values for the
motion of the sprite.

[F—

>100 CALL CLEAR

»110 CALL SPRITE(#1,33,5,92,1
24)

»120 FOR XVEL=-16 TO 16 STEP
2
»130 FOR YVEL=-16 TO 1& STEP
2

>140 DISPLAY AT (12,11):XVEL;
YVEL

>150 CALL MOTION(#1,YVEL,XVEL
)

>160 NEXT YVEL
>170 NEXT XVEL

Tl Extended BASIC

125



NEW

NEXT CHAPTER
A

=

Format
NEW

Description

The NEW command clears the memory and screen and prepares the
computer for a new program. All values are reset and all defined characters
become undefined. Any open files are closed. Characters 32 through 95 are
reset to therr standard representations. The TRACE and BREAK commands

are canceled.

Be sure to save the program that you have been working on before you enter
NEW as it is unrecoverable by any means once NEW has been entered.

Format
NEXT control-variable

See ON BREAK. ON WARNING. and RETURN (with ON ERROR) for the use
of NEXT clause with those stalements. 7

pescription

The I\'EX’_I‘ sLaEement is always paired with the FOR-TO-STEP statement for
construction ol a loop. Controi-variable must be the same as control-variable
in the FOR-TO-STEP statement. The NEXT statement may not appear in an
IF-THEN-ELSE statement. '

The NEXT statement controls when the loop is repeated. Each time the
NEXT slatement is executed, control-variable is changed by the value
following STEP in the FOR-TO-STEP statement, cr by 1 iftherc- is no STEP
clause. If the value of control-variable is between inifial-valuc and limit, the
loop is executed again. If it is not. control passes to the statement after
NEXT. Thus the value of control-variable at the end of the loop is always the
first value outside the range of the FOR-TO-STEP statement. See FOR-TO- |
STEP for more inlormartion.

Program
The program on the right illustrates >100 TOTAL=0
a use of the NEXT statement in lines >110 FOR COUNT=L0 TO O STEP -
130 and 140. 2
>120 TOTAL=TOTAL+CQUNT
>130 NEXT COUNT
>140 FOF DELAY=" TQ 100;:NEXT

126

DELAY
>150 PRINT TOTAL,COUNT;DELAY
SRUN
30 -2 101
Tl Extended BASIC  T1Exiended BASIC 127



NUMBER

Format

NUMBER linitial-line] [.incremernt]
NUM [initial-line] [,incremert!|

Description

The NUMBER comimand generates sequenced line numbers. allowing entry
of program lines without typing the line numbers. It initial-line and
increment are nol specificd, the line numbers start at 100 and increase in
inerements of 10, You may give the command at any time in the Command
Made. If a line already exists, the current line is displayed. You may (ype
over it to replace it, alter it using the edit func:ions. or press ENTER Lo
confirm it. To leave the NUMBER mode, press ENTER when a line comes up
with no slatements on il or press SHIFT € (CLEAR) when any line is
displayed. NUMBER may be abbreviated as NUM.

Options

You may specily an initial-line and/or increrment.

Example

In the following, whait you type is
UNDERLINED. Press ENTER after
cach line.

NUM instructs the computer to
number starting at 100 with
increments of 10.

NUM 110 instructs the computer to
number starting at 110 with
increments of 10. Change line 110 to
Z=11.

NUM 105.5 instructs the computer to
number starting at line 105 with
increments of 5.

Line 110 alrcady exists.

>NUM
>100 X=4
>110 Z=10
>»120
>NUM 110
110 Z=11
>120 ERINT (Y+X) /2
>130
>NUM 105,5
»105 ¥Y=7
110 Z=11
>115
>LIST
100 X=4
105 ¥=7
110 2=11
120 PRINT (Y+X)/Z

CHAPTER

OLD

Format
OLD ['] device-program-name |[’]

Description

The OLD command loads program-name from device into memory. The
program must first have been put on device using the SAVE command. OLD
closes any open files and removes the program currently in memory before
loading program-name. To add program lines from another program to a
program in memory, see the MERGE command.

Device can be several different things. If it is CS81 or C82, designating one of
the two possible cassette recorders, then no program-name is given. The
program loaded is the program that is on the cassette. Insiructions on
operaling the cassetle recorder are displayed on the screen.

See the Disk Memeory System Manual for instructions on using OLD with
diskettes.

Examples
OLD CS1 loads a program from a >0LD CS1
cassette recorder into the computer's

memory.

OLD* DSK1.MYPROG" loads the
programn MYPROG into the
computer’s memory from the
diskette in disk drive one.

>0LD ~DSK1.MYPROG"

OLD DSK.DISK3.UPDATESO icads
the program UPDATESO into the
computer's memory from the
disketie named DISK3.

>0LD DSK.DISK3.UPDATESQ

1258

T Extended BASIC

TI Extended BASIC 129



ON BREAK

Format
ON BREAK STOP
ON BREAK NEXT

Description

The ON BREAK stalement determines the action taken il a breakpoint is
encountered during the execution of a program. The default action is STOP.
which causecs program execution to halt and the standard breakpoint
message to be printed. The alternative is NEXT. which transfers control to
the nexi line without a breakpoint oceurring.

You can use ON BREAK NEXT to have a program ignere breakpoints which
you have put in a program for debugging purposes. (NOTE: ON BREAK
NEXT does not have any effect on a BREAK statement which is not followed
by a program line number. The breakpoint will occur even if the statement
ON BREAK NEXT has been executed.) When ON BREAK NEXT is in effect.
the external break, SHIFT C (CLEAR), does not stop a program. In that case
only SHIFT @ (QUIT) can stop the program. SHIFT Q (QUIT) erases the program
and returns you to the main screen and may interfere with the proper
operation ol some exlernal devices such as disk drives,

Program

The program on the right illustrates
the use of ON BREAK. Line 110 sets
a breakpoirt in line 150, Line 120
sels breakpoint handling to go to the
next line. A breakpeint occurs in line
130 in spite of line 120, Enter
CCNTINUE. No breakpoint occurs in
line 150 because of \inc 120, SHIFT C
(CLEAR) has no effect during the
exccution of lines 140 through 160
because of line 120. Line 170
restores the normal use of SHIFT C
(CLEAR).

>100 CALL CLEAR

>110 BREAK 150

>120 ON BREAX NEXT

>130 BREAK

>140 FOR 4=1 TO 50

>150 PRINT ~SHIFT ¢ IS DISABL
ED.”

>160 NEXT A

>170 ON BREAK STOP

>180 FOR A=1 TO 50

>190 PRINT “NOW IT WORKS."
>200 NEXT A

ON ERROR

S LS

CHAPTER

=

Format
ON ERROR STOP
ON ERROR line-number

Description

The CN ERROR statement determines the action taken if an error occlars
during the execution of a program. The default action is STOP. which causes
the standard error message to be printed and program execution o halt, The
alternative is to give a line-number which transfers control to that line in
case of an error.

Once an error has occurred and conirol has been transterred, error hanidling
reverts to the normal action, STOP. If you wish to have any new errors
handled differently. an ON ERROR statement must be executed again.

:‘l'fa line-number is specified by ON ERROR, the line-number must be the

beginning of a subroutine similar to that called by GOSUB. 1t should end

wwith a RETURN statement, See RETURN (with ON ERROR) for more
tnformation.

MNOTE: A transfer of control following the execution of an ON ERROR
‘statement acts like the execution of a GOSUB staternent. As with GOTO and
{GOSUB, you must avoid transfers to and from subprograms, The most
‘eommon result of an illegal transfer into a subprogram is a syntax erTor on a
‘statement that appears to be correct.

130

TI Extended BASIC

¥ TI Extended BASIC 131



ON ERROR

Program

The program at the right illustrates
the use of ON ERROR. Line 110
causes any error to pass control to
line 160.

An error oceurs in line 130 and
control is passed to line 160.

Line 170 causes the next crror to
pass conirol to line 230. Line 180
finds out about the error using CALL
ERR.

Line 190 transfers control Lo line 230
it the error isn't in the expecled line.
Line 200 transfers control to line 230
if the error isn’t the one expected.
Line 210 changes the value of X8 to
an acceptable value. Line 220
returns cenirol to the line in which
the error occurred.

Line 240 reports the nature cf the
unexpected error and the program
stops.

>100 CALL CLEAR

>110 ON ERROR 160

>120 X$="A"

>130 X=VAL(X3)

>140 PRINT X;“SQUARED IS";X¥}

>150 STOP

>160 REM ERROR SUBROUTINE

>170 ON ERROR 230

>180 CALL ERR{CODE,TYPE,SEVER
,LINE)

>190 IF LINE<>130 THEN RETURy
230

>200 IF CODE<>74 THEN HETURN
230

>210 X$="5"

>220 RETURN

>230 REM UNKNOWN ERROH

>24( PRINT "ERROR";CODE;" IN
LINE";LINE
>RUN

5 DQUARED 1S 25

132

TIExtended BASIC

|

CHAPTER

ON GOSUB

Format
ON numeric-expression GOSUR line-number [....|
ON numeric-expression GO SUB line-number |....]

pescription

The ON...GOSUB sratement transfers control to the subroutine beginning al
line-number in the position corresponding to the value of nireric-
expression. Other than giving a choice. it acts the same as the GOSUB
statement. but it is more efficient in that it may require fewer lines of code
than using an IF-THEN-ELSE slatement.

Numeric-expression must have a value from 1 through the number of line-
numbers.

Examples

ON X GOSUB 1000.2000,300

transfers control to 1000 if X is 1.
2000 if X is 2, and 3001f X is 3.

>100 ON X GOSUB 1000,2000,300

ON P -4 GOSUB 200,250,300,
800,170 translers control 1o 200 if
P-—4 is1(PisH). 2501 P-4 is 2,
300i{P-4is 3, 8OO ifP-4 is 4. and
170 if P-4 is 5.

>100 ON P-4 GOSUB 200,250,300
, 800,170

TI Extended BASIC 133



ON GOSUB

Program

The prcgram on the right illustrates
a use of ON...GOSUB. Line 220
determines where to go according to
the value of CHOICE.

>100 CALL CLEAR

>110 DISPLAY AT{11,1):“CHOOSE
ONE OF THE FOLLOWING:"

»120 DISPLAY AT{13,1):"1 ADD
TWO NUMBERS. ™

>130 DISPLAY AT(14,1):"2 MUL
TIPLY TWC NUMEEES.™

>140 DISPLAY AT(15,1):"3 SUB
TRACT TWC NUMBERS. "

>150 DISPLAY AT(20,1):"YOUR C
HOICE:"

>»160 DISPLAY AT(22,2):"FIRST
NUMBER:

>170 DISPLAY AT{23,1):"'SECOND
NUMBER: "

>180 ACCEPT AT (20,14)VALIDAT
£ (NUMERIC):CHOICE

>190 IF CHOICE<1 OR CHOICE>3
THEN 180

>200 ACCEPT AT (22,16)VALIDAT
Z{NUMERIC}:FIRST

>210 ACCEPT AT (23,16)VALIDAT
T(NUMERIC) : SECOND

>220 QN CHOICE GOSUB 240,260,
280

>230 GOTO 180

>240 DISPLAY AT(:,1):FIRST;"'P
LUS''; SECOND; "EQUALS" ; FIRST+S
SCOND

>250 RETURN

»260 DISPLAY AT(3,1):FIRST;"T
[MES"; SECOND; "EQUALS "; FIRST*
SECOND

>270 RETURN

»>280 DISPLAY AT(3,1):FIRST;"M
INGS " ; SECOND; "EQUALS "; FIRST—
SECOND

>290 RETURN

(Press SHIFT C to stop the
program,)

134

T! Extended BASIC

ON GOTO

CHAPTER

4

=

Format

ON numeric-expresston GOTO line-number [....]
ON numeric-expression GO TO line-number (... ]

Description

The ON...GOTO statemnent transfers control to the tine-number in the
position cerresponding to the value of numeric-expression. Other than giving
achoice, i- acts the same as the GOTO statement, but it is more efficient in
that it may require [ewer lines of code than using an IF-THEN-ELSE

statement.

Numeric-expression must have a vaiue from 1 through the number of line-

numbers.

Examples

ON X GOTO 1000,2000,300
transfers control to 1000 if X is 1.
2000 if X s 2, and 300 if X is 3. The
equivalent statement using an IF-
THEN-ELSE statement is I[F X =1
THEN [0CO ELSE IF X=2 THEN
2000 ELSE IF X =3 THEN 300 ELSE
PRINT “"ERROR!""::STOP.

ON P-4 GOTO 200,250.300.800,170
transfers control to 200 if P-4 is 1
(Pis 5). 250if P-4is 2, 300 it P-4
183, 800ilP-4is 4, and 170 if P-4
s 5.

[ee—

>100 ON X GOTO 100C,2000,300

>100 ON P-4 GOTO 203,250,300,
800,170

TIExtended BASIC



ON GOTO

Program

The program on the right illustrates
a use of ON..GOTO. Line 220
determines where to go according to
the value of CHOICE.

>100 CALL CLEAR

>110 DISPLAY AT(11,1): CHOOSE
ONE OF THE FOLLOWING:"

>120 DISPLAY AT(13,1):"1 ADD
TWO NUMBERS.

»130 DISPLAY AT(14,1):°2 MUL
TIPLY TWO NUMBERS.™

»140 DISPLAY AT(15,1):'3 SUB
TRACT TWQO NUMBERS.™

>150 DISPLAY AT(20,1):"YOUR C
HOICE: "

>160 DISPLAY AT(22,2):"FIRST
NUMBER: "

»170 DISPLAY AT(23,1): SECCOND
NUMEER: -

180 ACCEPT AT {20,14)VALIDAT
E (NUMERIC):CHOICE

>190 IF CHOICE<1 CR CHOICE>3
THEN 180

>200 ACCEPT AT (22,16)VALIDAT
E NUMERIC):FIRST

>210 #CCEPT AT (23,16)VALIDAT
E NUMERIC) :SECOND

»>220 ON CHOICE GOTO 230,250,
70

>230 DISPLAY AT(3,1}:FIRST;'?
LUS " ;SECOND; "EQUALS ' ; FIRST+5S
ECONL

>240 GOTO 180

»>250 DISPLAY AT({3,1):FIRST;"T
IMES'';SECOND; “EQUALS"; FIRSTX
SECOND

»>260 CGOTO 180

>270 DISPLAY AT(3,1):FIRST;"M
INUS'";SECOND; "EQUALS " ; FIRST-
SECORD

»>280 COTO 180

{Press SHIFTC to stcp the
program. )

136

TI Extended BASIC

CHAPTER

ON WARNING

Format
ON WARNING PRINT

ON WARNING STOP
ON WARNING NEXT

Description

The ON WARNING statement determines the action taken if a warning
occurs during the execution of a program. The default action is PRINT,
which causes the standard warning message to be printed and the program
to continue execution. One alternative is STOP, which causes the standard
warning message to be printed and the program to halt execution. The other
“alternative is NEXT which causes the program to continue execution without
. printing any message.

Program

The program on the right illustrates >100 CALL CLEAR

“the usc of ON WARNING. Line 110 >110 ON WARNING NEXT
sets warning handling to go to the »>120 PRINT 120,5/0

next line. Line 120 thercfore prints

the result without any message,

Line 130 sets warning handling 1o >130 ON WARNING PRINT
"the default, printing the message and »140 PRINT 140,5/0
-then continuing execution. Line 140

~ therefore prints 140. then the

‘warning, and then continues.

Line 150 scts warning handling 1o >150 ON WARNING 8TCP
_ print the warning message and then >160 PRINT 160,5/0
-Btop execution. Line 180 theretore >170 PRINT 170
»prints 160 and then the warning >RUN
 message and then stops. 12¢ 9.999997+x*
140
¥ WARNING

NUMERIC OVERFLOW IN 14D
2.99999:+xx

160

* WARNING

NUMERIC OVERFLOW IN 160

TI Extended BASIC 137




OPEN

Format

OPEN #flle-number.device-filename [ file-organization] { fite-typel
[-open-mode [.record-typel

Description

The OPEN statement prepares a BASIC program to use data files stored on a
diskette or cassette by providing a link between file-nurmber and a file. To se:
up this link, the OPEN statement describes a file’s characteristics. If the file
already exists. the description that is given in the program must match the
actual characteristics of the file. Files on cassettes are not checked, however,
so errors may occur if the characteristics do not match,

File-number must e included in the OPEN statement. Statements which
refer to files do so with a file-number from 0 through 255. File number O is
the keyboard and screen of the computer. It cannot be used for other files
and is always open. You may assign the other numbers as you wish. with
each file having a cifferent number. File-number is entered as a number sign
{(*) followed by a numeric expression that, when rounded to the nearest
integer. is a number from 0 to 255, and is no: the number of a file that is
already open,

Device must also be included in the OPEN statement. If device is CS1 or
CS2, designating one of the two cassctte recorders, then no file-name is
given. Instructions on operating the rassette recorder are displayed on the
sCreer.

If device is DSK1, DSK2, or DSK3. designating one of the three disk drives,
then file-name is the name of a file an the diskette in the given drive. If
device is DSK.diskette-name, where diskette-name is the name of a diskette
in onc of the drives, then file-name is the name of a file on the diskette
named disketle-name. The computer searches the drives, starting at DSK1,
until it finds the diskette with the given name. Then il looks for file-name on

The other information may be in any order, cr may be omitted. Il an item is
omitted, the computer assumes certain defaults, which are described below.

File-organization can be either sequential or random. Records in a sequential
file are read or written one after the other. Records in random [iles can be
read or written in any order. Random files may also be processed
sequentially. To indicate which structure the file has, enter either
SEQUENTIAL for sequential files or RELATIVE for random files. You may
optionally specify the initial number of records an a file by lollowing the
word SEQUENTIAL or RELATIVE with a numeric expression. Il you do not
specify the ftle-organtization. the default is SEQUENTIAL.

= CHAPTER
OPEN

=

File-iype may be either DISPLAY or INTERNAL. Files can be written either
in human-readable form. called ASCII (DISPLAY), or in machine-readable
form, called binary (INTERNAL). Binary records may take up less space and
are processed more quickly by the computer. However, if the Information is
going to be printed or displayed, ASCII format is usually a better choice.

To specify that you wish the file to be in ASCII format, enter DISFLAY. To
gpecify binary format, enter INTERNAL. If you do not specify a flle-type. the
default is DISPLAY. Usually INTERNAL is the best choice when using files
on cassettes or diskettes, and DISPLAY is the best choice when using files on
the thermal printer or RS232 Interface.

Open-mode may be UPDATE, INPUT. QUTPUT, or APPEND. The computer
may be instructed thal the file may be both read and written on, that it may
only be read. that it may only be written on. or that it may only be added to.
However. if the file is marked as protected, it cannot be written on and may
only be opened for input.

To be able both to read from and write to a file, specify UPDATE. To just
read from a file, specify INPUT. To just write to a file. specity OUTPUT, To
only add to a file, specify APPEND. Append mode can only be specified for
VARIABLE length records. If you do not specify an open-mode. the default is
UPDATE.

Note that if an unprotected file already =xists on a disketie. specifying an
opern-mode of OUTPUT to the same file name writes over the existing file
with the new data. You can prevent this by moving to the end of the file by
using the RESTORE statement with the proper record or opening the file in
the APPEND mode.

Record-type may be either VARIABLE or FIXED. Files may have records that
are all the same length or that vary in length. If all records are the same
length, any that are shorter are padded to make up the difference. Any that
are longer may be truncated tc the proper length. You may specify records of
variable length by entering VARIABLE. You sperify records of lixed length
by entering FIXED.

If you like, you may specify a maximum length of a record by following
VARIABLE or FIXED with a numeric expression. The maximum record is
dependent on the device used. If vou do not specify a record length. the
defaull is 80 for diskeltes. 64 for cassel.es, 80 far the RS232 interface. and
32 for the thermal printer.

RELATIVE files must have FIXED leng:h records. If you do not specify a
record-type for a RELATIVE file. the defaull is FIXED.

138 Tl Extended BASIC

Tl Exlended BASIC 139



OPEN

SEQUENTIAL files may be either FIXED or VARIABLE. If you do not specify
a record-type for a SEQUENTIAL file, the default is VARIABLE. A fixed-
length file may be reopened for either SEQUENTIAL or RELATIVE access
independent of previous file.organization assignments.

Examples

OPEN #1:"CS1" . FIXED.OUTPUT
opens a lile on cassette one. The file
is SEQUENTIAL, kept in DISPLAY
format. in OUTPUT mode with
FIXED lengih records with a
maximum length of 64 bytes,

OPEN #23:"DSK.MYDISK.X",
RELATIVE 100.INTERNAL,UPDATE,
FIXED opens a file named X', The
file is on the diskette named MYDISK
in whichever drive that diskette it is
located. The file is RELATIVE, kept
in INTERNAL format with FIXED
length records with a maximum
Length of 80 bytes. The file is
opened in UPDATE mode and starts
with 100 records made available for
it.

OFPEN #2423:A8 INTERNAL, if AS
equals "DSK2 ABC", assumes a file
on the disketle in drive two with a
name of AEC. The lile is

format, in UPDATE mode with
VARIABLE length records with a
meximum length of 80 hyles,

OFEN #17:TP".OUTPUT prepares
the thermal printer for printing.

>100 OPEN #1:"CS81",FIXED,OU"
FUT

>300 OPEN #23:"DSK.NYDISK.X",
RELATIVE 100, INTERNAL,UPDATE
, FIXED

>100 OPEN #243:4%, INTERENAL

>100 OPEN #17:"TP",QUTPUT

140

Ti Extended BASIC

CHAPTER

OPTION BASE

—

Format
OPTION BASE O
OPTION BASE 1

pescription

The OPTION BASE statement sets the lowest allowable subscript of arrays to
zero or one. The default is zero. If an OPTION BASE staiement is used. it
must have a lower line number than any DIM statement or reference to any
array. There may only be one OPTION BASE statement in a program, and it
applies to all array subscripts. The OPTION BASE siatement may not appear

in an IF-THEN-ELSE staterment,

Example
OPTION BASE | sets the lowest
allowable subscript of all arrays to

one.

>100 OPTION BASE 1

141

Tl Extended BASIC



|

CHAPTER

PATTERN subprogram PEEK subprogram

— —

rormat
CALL PEEK(address, numeric-variable-list)

Format
CALL PATTERN{#sprite-number.character-value ,...] }

D,.cription

The PEEK subprogram is used. along wilth INIT, LINK, and LOAD, 10 access
assembly language subprograms. The PEEK subprogram returns ‘valuc.’s. in
the variables in numeric-variable-list that Correspgnd with the values in the
byte specified by address and the bytes following it. PEEK can be 'I.fSC.d o
without assembly language subprograms. but the information obtained is of

little use.

Description

The PATTERN subprogram allows you to change the character pattern of a
sprite without affecting any other characteristics of the sprite.

Sprite-number specifies the sprite you are using. Character-value may be
any integer from 32 (o 143. See the CHAR subprogram for information on
defining the pattern for characters. Sec the MAGNIFY subprogram for more

information.

Program

The program on the right illustrates
the use of the PATTERN
subprogram. Lines 110 through 140
build a floor,

Lines 150 though 200 define
characters 96 through 107.

Line 210 creates a sprite in the
shape of a wheel and starts it moving

Line 220 makes the sprite double
size.

Lines 230 through 270 make the
spokes of the wheel appear 1o move
as the character displaved is
changed.

Also see the third example of the
SPRITE subprogram,

>100 CALL CLEAR

>110 CALL COLOR(12,1%6,16)
»120 FOR A=19 TO 24

>130 CALL HCHAR(A,1,120,32)
>140 NEXT A

>150 A$="01071821214141FFFF41
41212119070080EQ988484828RFF
FF8232848498E000"

>160 33="01061820305C46818142
4624201807008060183424624281
8162340C0418E000"

>170 C8="0106182C244642818146
5C30201807008060180400346281
814262243418E000"

>180 CALL CHAR(96,A$)

>190 CALL CHAR(100,B$)

>200 GALL CHAR(104,C3)

>21C CALL SPRITE(#1,96,5,130,
1,0,8)

>220 CALL MAGNIFY(3)

>230 FOR A=96 TO 104 STEP 4
>240 CALL PATTERN(#1,A)

>250 TOR DELAY=1 TO 5:: NEXT
DELAY

»260 NEXT A

>270 GOTO 230

(Press SHIFTC to stop the
program. }

142

T1 Extended BASIC

Detailed instructions on the use of INIT. LINK. LOAD, and PEEK are included
with custorn written programs that may be available on diskette or cassette.

Indiscriminate use of PEEK may cause the computer to “lock up' and
require it to te turned off and back on before further use

Example
CALL PEEK(8192,X1.X2.X3.X4) >100 CALL PEEK{8192,X1,X2,X3,
returns the values in locations 8192, X&)

8193, 8194, and 8195 in X1, X2, X3.
and X4, respectively.

143

TI Extended BASIC



Pl B FOS CHAP'E

Format

PI Format
pOS(string! String2 . numeric-expression}
Description peseription
Tte PI function returns the value of 7 as 3.14159265359. The POS function returns the position of the first occurance of string2 in
Example stringl. The search begins at the position specified by numeric-expression. Il
VOLUME =4/3"PI*6 A 3 sets VOLUME ~ >100 VOLUME=4/3%PI*6A 3 po match is found, the function returns a value of zero,
eguaj to four thirds times pi times Examples
z;;]::ii't::‘:ahdi‘i;';‘; :i‘;‘““’e of a X =POS("PAN","A".1) sets X equal  >100 X=POS(*PAN","4",1)
’ to 2 because A is the second letter in
PAN.
¥ =FOS5({"'APAN"," A" 2} sets Y equal >100 Y=PCS{"APAN ", A",2)
to 3 because Lhe A in the third
position in APAN is the first
occurance of A in the portion of
APAN that was scarched.
Z=POS{"PAN"","A".3) sets Z cqual >100 Z=POS{"'PAN","A",3)
to O because A was not in the parl of
PAN that was searched.
R=POS{"PABNAN".“AN".1) sets R >100 R=POS(PABNAN","AN",1)
equal to 5 because the first
occurance of AN starts with the A in
the {ifth posidon in PABNAN.
Program
The program at the right illusirates a >100 CALL CLEAH
use of POS. In it any inpul is »>110 PRINT “ENTER A SINTENCE.
searched for spaces. and is then "
-printed with each word on a single >120 INPUT X%
line, >130 5=P0S{X%," ,1)
»>140 F 5=0 THEN PRINI X3 ::
PRINT :: GOTC 110
>150 Y$=SEGP(X$,1,3):: PRINT
Y3
>160 X$=SEGE{X%,S+1,LEN(XS))
»170 GOTO 130
{Press SHIFTC toc stop the
progzam. )
144

Tl Extended BASIC TI Extended BEASIC 145



L
g

CHAPTER

POSITION subprogram - [WRINT

Format
CALL POSITION(#spri
prite-number,dot-row,dot-
vt oSt column |,...] ) [#file-number [,REC record-number] :] [print-list]
ption

RINT statement allows you to transfer the values of the elements of the
pnal print-list to the display screen or optionally to an external file or

. Print-list consists of string constants, numeric constants, string

les, numeric variables, numeric expressions, string expressions, and/or
AB function. Each element in print-list is separated from the others by

icolon, a comma, or a colon.

semicolon, comma, and colon control spacing for the screen or a file
fned in DISPLAY format. A semicolon causes the next element to be

ked immediately adjacent to the previous element. A comma causes the

't element of print-list to be put in the next print field. Each print field is
haracters long. The number of print fields depends on the record length
e device being used. On the screen, the print fields are at positions 1 and
{ If the curscr is past the start of the last print field, the next item is

Inted on the next line. A colon causes the next element to be put on the

‘» t line or record. To print several blank lines, you may put several colons
v'r the PRINT statement. However, they must have spaces between them
j they are not confused with the statement separator symbol (::).

The POSITION sub
. program returns the iti
t position of ifi i
hie given dot-row(s) and dot-colur nn(s) as numbe(;s tflrlngp;: Ctl:(;%;p’rlllt)e(S) "
. €y are

the position of the y
pper left corner of th i ite i
dot-row and dot-column are set to zero ¢ oprite: I thesprite is not defined.

I he Spl ite Contll’lu »
€s IO move aItCI ltS pOSlthIl 1s ICtUIIled SO tllat must e
aHOW Cd 101 Ihe dlStaI’lCe maov ed depends on the Spl lte S Speed

Example

CALL POSITION(#1,Y,X

- Y, X) returns the >
position of the upper left hand corner 100 CALL POSITION(#1,Y,X)
of sprite #].

Also see the third exa
mple of th
SPRITE subprogram, )

parator may be placed following the last element of print-list, which
fects the placement of the next element of the next PRINT, PRINT...USING,
ISPLAY (without AT), or DISPLAY...USING (without AT) statement written
B the same device. It causes the next output statement to be considered to

E a continuation of the current one unless it is a PRINT statement with a

BEC clause.

/ hen printing a new line on the screen, everything (except sprites) is
ferolled up one line (so the top line is lost) and the new line is printed at the

fottom of the screen.

ptions
fhe #file-number determines the file that is to be printed on. If it is omitted
jor #0, the screen is used. Otherwise file-number must be the number of a file

fthat is already open. See OPEN.

_; he REC clause is used to specify the record on which you wish to print the
 elements in print-list. REC may only be used with files that were opened as

RELATIVE files. See OPEN.

147

146

TI Extended BASIC f TI Extended BASIC



PRINT

In printing to INTERNAL format filcs, the comma and semicolon both place
the elements in print-list adjacent to each other. In DISPLAY format files, the
comma and semicolon act as described above. with the semicolon placing the
element adjacent to the previous element and the comma putting the

element in the next print ficid.

Examples

PRINT causes a blank line to appear
on the dispay screen.

PRINT “THE ANSWER IS":ANSWER
causes the string constant THE
ANSWER IS to be printed on the
digplay screen, followed immediately
by the value of ANSWER, If
ANSWER is positive, there will be a
blank for the positive sign after 1S.

PRINT X:Y:2 causes the value of X to
be printed on a line and the value of
Y/2 to be printed on the next line.

PRINT #12.REC 7:A causcs lhe value
of A to be prinicd on the eighth
record of the tile that was opened as
number 12. (Record number O is the
first record)

PRINT #32 A B.C, causes the values
of A, B. and C 1o be printed on the
next record of the file that was
opened as number 32. The final
comma creales a pending output
condition. The next PRINT statement
directed to file number 32 will print
on the sames record as this PRINT
stalement unless it specitics a record,
thereby closing the pending output
condition.

>100 PRINT

>100 FRINT "THE ANSWER IS";AN
SWER

>100 PRINT X:Y/2

>100 PRINT #12,REC 7:4

>100 PRINT #32:4,B,C,

PRINT

|

CHAPTER

PRINT #1 REC 3:A.B followed by
PRINT #1:C.D causes A and B 10 be
Printed in record 3 of the fite that
was opened as number 1 and C and
D to be printed in record 4 of the
sarmne file.

Program

The program al the right prints cut

various values in various positions
on the display screen.

>100 PEINT #1,REC 3:4,5
>150 PEINT #1:6,D

>100 CALL CLEAR

>110 PRINT 1;2;3:;4;5;6:7:8;9
>120 PRINT 1,2,3,4,%,6
»130 PRINT 1:2:3

>140 PRINT
>150 PRINT 1;2;3;
>160 PRINT 4;5:6/4

>RUN

12 3 4 5 6 7 8 9
1 2

3 4

5 &

1

2

3

1 2 3 4 5 1.5

148

Tl Extended BASIC

Tl Extended BASIC

149



PRINT USING

Format

PRINT {#ftle-number [ .[REC record-number]|USING string-expression:print-lis;
PRINT [#file-number | REC record-number||USING ltne-number:print-list

Description

The PRINT.. .USING statement acts the same as PRINT with the addition of
the USING clause. which specifies the format to be used. String-expression
defines the format in the manner described in IMAGE. Line-number refers 1o
the line number of an IMAGE statement. See the IMAGE statement for more
information on the use of string-expression.

Examples
PRINT USING "##&# ##:32 5 prints
32.50.

PRINT USING "THE ANSWER IS
#H# #:123.98 prinis THE ANSWER
IS 124.0.

PRINT USING 185:37 4, - 86.2 prints
the values o’ 37.4 and —86.2 using
the IMAGE statement in line L85.

>100 PRINT USING “##E.##:32.

5

>100 PRINT USING “THE ANSWER

IS ###.#:123.98

>100 PRINT USING 185:37.4,-8b6

.2

150

TI Extended BASIC

RANDOMIZE

CHAPTER

_——

Format
RANDOMIZE {numeric-expression|

pescription

The RANDOMIZE statement resets the random number generator to an
unpredictable sequence. If RANDOMIZE is followed by a numeric-expression,
the same sequence of random numbers is preduced each time the statement
is executed with that value for the expression. Different values give different

SequEeNces.

Program
The program at the right illustrates a
use of the RANDOMIZE statement, It
accepts a value for numeric-
expression and prints the first 10
values obtained using the RND
function.

[rro—

>100 CALL CLEAR

>110 INPUT ~SEED: ":5

»>120 RANDOMIZE S

>130 FOR A=1 TO 10::PRINT A;R
ND::NEXT A::PRINT

>140 GOTO 110

(Press SHIFT C to stop the
program. )

Tl Extended BASIC

151



REM

Format
REM character-string

Description

The REM statement allows you to enter remarks Into your program. The
remarks may be anything that you wish, but are usually used to divide
seclions of programs and to explain what the following scclion is meant to
do. No matter what follows REM. including the statement separator symbol
(::). remarks are not executed and have no effect on program execution. They

do, however, take up space in memory.

Example
REM BEGIN SUBROUTINE identifics
a section beginning a subroutine.

>100 REM BEGIN SUBROUTINE

AESEQUENCE

CHAPTER

Format
RESEQUENCE linitial-line| [.increment]
RES linitial-line] Lincremennt]

pescription

The RESEQUENCE command changes the line numbers of the program in
memory. If no initial-line is given, the line numbering starts with 100. If no
increment is given, an increment of 10 is used. RESEQUENCE may be
‘abbreviated as RES.

In addition to renumbering lines, any line references in the statements
BREAK, DISPLAY. USING, GOSUB. GOTO, IF-THEN-ELSE, ON ERROR.
ON...GOSUB, ON...GOTO. PRINT...USING, RESTORE, RETURN, and RUN
are also changed so that they refer to Lhe same lines of code as before
resequencing. If a line referred to in a statement does not exist, the line
pumber is repiaced with 32767.

f, because of the initial-line and increment chosen, the program requires
Bnes larger than 32767, the resequencing process is halted and the program
is unchanged.

Bxamples

RES resequences the lines of the >RES
program in memory to start with

100 and number by 10s,

RES 1000 resequences the lines of
the program in memory to start with
1000 and number by 10's.

RES 1000,15 resequences the lines
of the program in memory 1o start
with 1000 and number by 15°s.

>RES 1000

>RES 1000,15

RES |15 resequences the lines of the
Program in memory to start with
100 and number by 15s.

>RES ,15

[S—

1534 Tl Extended BASLIC

T Extended BASIC 155



RESTORE

Format
RESTORE [line-number]
RESTORE #file-numter [.REC record-number]

Description

The RESTOKE slatement can be used either with DATA statements or with
files. When used with DATA siatements, RESTORE sets the DATA statement
which will be used by the next READ statement. If no line-number is given,
the DATA statement with the lowest numbered line is used by the next
READ statemend, If line-number is given, then the DATA statement with
that line number or (il it is not a DATA statement) the next DATA statement
following it is used.

When used with {iles, the RESTORE statement sets the record that is used
by the next PRINT, INPUT, or LINPUT statement referring to file-number. If
no REC clause is given, the next record is the first record in the file, record
number 0. If the REC clause is present, record-number specities the next
record to be used.

If there is pending oulput because ol a previous PRINT, DISPLAY,
PRINT...USING, or DISPLAY .. USING. then that pending record is writien on
the file hefore the RESTORE statement is executed. Pending input data is
removed by the RESTORE starement.

Examples

RESTORE sets the next DATA
staterment to be used (o the first
DATA statement in the program.

>100 RESTCORE

RESTORE 130 sets the next DATA >100 RESTORE 130

statement to be used 10 the DATA
statement at line 130 or, if line 130
is nat a DATA statement, to the next
DATA statement after line 130.

RESTORE #1 scts the next record to >100 RESTORE #1
be used by the next PRINT, INPUT,
ar LINPUT statement using file #1 to

be the first record in the file.

RESTORE #4,REC H3 sets the next »100 RESTCRE #4,REC H5
record to be used by the next PFRINT,
INPUT, or LINPUT statement using

file #4 10 be record H3.

]

156 TI Extended BASIC

CHAPTER

AETURN (with GOSUB)

Format
RETURN
pescription

see also RETURN (with ON ERROR).

RETURN used with GOSUB transfers conyro] back to the statement after the
GOSUB or ON...GOSUB which was most recently executed.

Program
The program on the right illustrates
a use of RETURN as used with
GOSUB. The program figures " : AMOUNT
nterest on an amount of money put >120 INPUT "ANNUAL INTEREST R
in savings. ATE: ":RATE
>1%0 IF RATE<1 THEN HATE=RATE
%100
>140 PRINT “NUMBER OF TIMES ¢
OMPCUNDED"
>150 INPUT “ANNUALLY: "':COMP
>160 INPUT "STARTING YEAR: ':
Y
>170 INPUT “NUMBER OF YEARS:
"IN
>18) CALL CLEAR
>190 FOR A=Y TC Y+N
>200 GOSUB 240
>210 PRINT A, INT(AMOUNT*100+.
51/160
>220 NEXT A
>230 STOP
>240 FOR B=1 TO COFP
>250 AMOUNT=AMOUNT+AMOUNT*RAT
E/{(COMP*10D)
>260 NEXT B
>270 RETURN

>100 CALL CLEAR
>110 INPUT “AMCUNT DEPOSITED:

S
TR -
Xtended BASIC 157




RETURN (with ON ERROR)

CHAPTER

- “;,._.._
Format Format
RETURN [line-number] E}RND
RETURN [NEXT]}
Delcript:lon

Description
See also RETURN (with GOSUB).

RETURN 1s used with ON ERROR. After an ON ERROR statement has besn
executed, an error causes transfer to the line specified in the ON ERROR
statermnent. That line, or one after it, should be a RETURN staternent. If
RETURN is given without anything following it, control is returnied to the
statement on which the error occurred and the program executes it again. If
RETURN is followed by line-number, control is transferred to the line
specified and execution starts with that line. If RETURN is followed by
NEXT, control is transferred to the statement following the one that caused
the error.

Program

The program on the right illustrates >100 CALL CLEAR
the use of RETURN with ON ERROR. >110 A=1

Line 120 causes an error to transter >120 ON ERRCR 170
control to line 170. Line 130 causes >130 X=VAL('D")

an error. Line 140, the next line after >140 PRINT 140

the one that causes the error, prints >150 STOP

140. Line 170 checks to see if the >160 REM ERROR HANDLING
error has occurred four times and >170 IF A>4 THEN 220

transfers control to 220 if it has. Line >180 A=A+1
180 increments the error counter by >190 PRINT 190

one. Line 180 prints 190. Line 200 >200 ON ERROR 170
resets the error handling to transfer >210 RETURN
to line 170. Line 210 returns to the >220 PRINT 220 :: RETURN NEXT
line that caused the error and RUN
executes it again. Line 220, which is 190
executed only after the error has 190
occurred four times, prints 220 and 130
returns to the line following the line 190
that caused the error. 220
140

Also see the example of the ON
ERROR statement.

1‘]1c RND function returns the next pseudo-random number in the current
wquence of pseudo-rancom numbers. The number returned is greater than

tement appears in the program.

amples

i‘pox.oms INT(RND* 16) + 1 sels
%OLORIS equal to seme number
m 1 through 16.

gYALUE =INT(RND*16)+ 10 sets
'Z&WALUE equal to some number {rom
710 through 25.

AL(8) =INT(RND*(B-A + 1)) + A sets
1L(8) equal to some number {rom A
‘through B.

[—

sor equal to zero and less than one. The sequence of random numbers
Heturned is the same every time a program is run unless the RANDOMIZE

>100 CCLOR16=INT(RND*16)+1

2100 VALUE=INT(RND¥16)}+1D

>100 LL(8)=INT{RND*(B-A+1))+A

158 TIExtended BASIC

T Extended BASIC

159



RPT$ — R" UN CRAPTER
Format - Format
RPTS(string-expression,numeric-expresston) - RUN ["deuvice program-name"’|
-.'RUN [line-number]

Description '
Th RPl'Jr f i i N . peucription
of SCt rn 3 unect19n reéu l;gf’rg strlgg cqual :0 nu;nenc-etflp res;sslgn ;epetitt lons % The RUN command, which can also be used as a stalement, starts program
the excg;;ﬁ: ssutm. disc};gegcesda string iongier i an characters. 5 i execution. The program to be run is first loaded into memory from device.

characters are and a waming Is glven. % . program-name if that option is specified. The program is then checked for
Examples }' ; certain errors, such as FOR-NEXT loops that are missing the NEXT

“statement, and errors in syntax in statements. The values of all numeric
variables are set to zero and the values of all string variables are set to null (a
string of zero characters). The program is then executed.

MS = RPTS(""ABCD" 4) sets M8 equal >100 M$=RPT$("ABCD",4)
o "ABCDABCDABCDABCD".

CALL CHAR(96.RPTS("0000FFFF", >100 CALL CHAR{96,RFT$( '000CF
8)) defines characters 96 through 29 FFF',8))

with the string "'COOOFFFFO0O0OFFFF
0000FFFFOO00FFFFOOO0FFFFO000

F 'Options
Z 'If device.program-narme is specified, the program to be run is loaded from
& the specified device. The program and data currently in memory are lost.

FFFFOOOOFFFFOOO0OFFFF" _If line-number is specified, the program in memory is run starting at line-
- . nurnber.
PRINT USING:RPTS("'#",40]: X8 >100 PRINT USING RPTIE(#°,4() .
prints the value of X8 using an X3 '__1';;l=xa.mples
image that consists of 40 number “/RUN causes the computer to begin >RUN
signs. _'}‘{liexecutjon of the program in memory.
.;:."RUN 200 causes the computer to >RUN 200
“ begin execution of the program in >100 RUN 200

%’ memory starting at line 200.

= RUN “DSK1.PRG3" causes the >RUN "JSK1.PRG3"
 computer 1o load and begin >320 RUN “DSK1.PRG3"
% execution of the program named

% PRG3 from the disketle in disk

£ drive 1.

160 Tl Extendec BASKC ~ § Tl Extended BASIC 161




RUN

Program

The program at the right illustrates
the use of the RUN command used
as a statement. It creates a “menu’”
and lets the person using the
program chose what other program
he wishes to run. The other
programs should RUN this program
rather than ending in the usual way,
so that the menu is given again after
they are finished.

>100 CALL CLEAR

>110 PRINT 1 PROGRAK 1."
>12C PRINT ‘2 PROGRAK 2.
>130 PRINT "3 PROGRAF 3."
>140 PRINT "4 END."

>150 PRINT

>160 INPUT “YOUR CHOICE: ":C
>170 IF C=1 THEN RUN "DSK1.FPE
G1"

>180 IF C=2 THEN RUN "DSK1.PE
Ge"

>190 IF C=3 THEN RUN "DSK1.PE
G3"

>200 IF C=4 THEN STOF

>210 GOTO 100

162

Tl Extended BASIC

CHAPTE

‘
>
<
m
T

BSAVE device.program-name [ PROTECTED]
BAVE device.program-name [ MERGE]

sscription

i fpxternal device under the name program-name. By using the OLD

_ " mand, you can later recall the program into memory. The meihod of

Ssaving onto a cassette recorder is given In the User’s Reference Guide. The
fmethod of saving onto a diskette is given in the Disk Memory System

MRy using the keyword PROTECTED. you may optionally specify that a
Fprogram can only be run or brought into memory with OLD. The program
%eannot be listed, edited, or saved. This is not the same as using the
Swrotection avallable with the Disk Manager Module. NOTE: Be sure to keep

an unprotected copy of any program because the protection feature is not
#geversable, If you also wish to protect the program from being copied, use the
dgrotect feature of the Disk Manager moduie.

_'ou may optionally specify that the program is to be available for merging
dwith another program by using the key word MERGE. Only programs saved
th the key word MERGE may be merged with another program.

ixamples
ABAVE DSK1.PRG1 saves the
#program in memory on the diskette
#in disk drive 1 under the name PRG1.

>SAVE DSK1.PRG1

.AVE DSK1.PRG1,PROTECTED »SAVE DSK1,PRG1, PROTECTED
¥#aves the program in memory on the

skette in disk drive 1 under the

e PRG1. The program may be

£loaded into memory and run, but it

Ymay not be edited, listed, or resaved.

5
IBAVE DSK1.PRG 1, MERGE saves the
“program in memory on the diskette
“in disk drive 1 under the name

. PRG1. The program may later be

- merged with a program in memory

. by using the MERGE command.

>SAVE LSK1.PRG1,MERGE

. TiExtended BASIC 163



SAY subprogram

Format
CALL SAY(word-string |.direct-string] [....])

Description

The SAY subprogram causes the compuler to speak word-string or the value
specified by direct-string when the Solid State Speech™ Synthesizer {sold
separately) is connected. For a complete description of SAY, see the manual
that comes with the Speech Editor Command Module and Speech
Synthesizer (both sold separately).

The value of word-string is any string value listed in Appendix L. If it is
given as a literal value, it must be enclosed in quotation marks. The value of
direct-string is a value returned by SPGET. The value of direct-string may be
altered to add suffixes as described in Appendix M.

Word-strings and direct-strings must be alternated in the CALL SAY
subprogram. If you wish to have two direct-strings or word-strings spoken
consecutively, you may put in an extra comma to indicale the pesition of the
item omitted.

Examples

CALL SAY("HELLO, HOW ARE
YOU"') causes the compulter o say
“Hello, how are vou.”

>100 CALL SAY("HELLO, HOW ARE
YOU'")

CALL SAY(,AS8..BS) causes the
computer to say the the words
indicated by AS and BS, which must
have been returmed by SPGET.

CALL SAY({,A$,,B$)

Program

The program on the right illustrates
using CALL SAY with a word-string
and three direct-strings.

>100 CALL SPGET( 'HOW",X$)

>110 CALL SPGET(''ARE",Y$)

>120 CALL SPGET(YOU",Z$)
>130 CALL SAY("HELLO",X%,,Y$,
,Z8)

164 TT Extended BASIC

'SCREEN subprogram

CHAPTER

—

Format
" CALL SCREENI(color-code)

-' pescription

The SCREEN subprogram changes the color of the screen to the color

" gpecified by color-code. All portions of the screen that do not have characters
} ‘on them, or have characters or portions of characters that are color 1

(tra.nsparent} are shown as the color specified by color-code. The standard
screen color for T1 Extended BASIC is 8, cyan.

* The color codzs are:

Code Color
Transparent
Black

Medium Green
Light Green
Dark Blue
~ight Blue
Dark Red
Cyan

o~ ;MW Wn o~

""‘ Examples

CALL SCREEN(8) changes the screen

o to cvan. which is the standard screen
color.

*# CALL SCREEN(2) changes the screen
* to black.

Code Color
9 Medium Red
10 Light Red
11 Dark Yellow
12 Light Yellow
13 Dark Green

14 Magenla
15 Gray
16 White

>100 CALL SCREEN(8)

>100 CALL SCREIN(2)

TI Extended BASIC

165



SEG$

Format
SEGS(string-expression,pasitlon,length)

Description

The SEGS function returns a substring of a string. The string returned starts
at position in string-expression and extends for length characters. If position
is beyond the end of string-expression, the null string (') ts returned. If
length extends beyond the end of string-expression, only the characters to
the end are returned.

Examples

X8 =SEGS(“FIRSTNAME >100 X$=SEGS(“FIRSTNAME LASTN
LASTNAME™,1.9) seis XS equal to AME",1,9)

"FIRSTNAME".

YS$=SEGS("FIRSTNAME >100 Y$=SEGS( FIRSTNAME LASTH
LASTNAME" 11,8} sets YS equal to AME",11,8)

“"LASTNAME".

Z8=SEGS("FIRSTNAME »100 Z$=SEGE("FIRSTNAME LASTN
LASTNAME".10.1) sets Z$ equal to AME",10,1)

PRINT SEGS$(AS.B.Ci prints the »>100 PRINT SEG$(AS,B,C)

substring of A8 starting at character
B and extending for C characters.

166 TI Extended BASIC

o
—
m
X

CHA

3 SGN function returns 1 if numeric-expression is positive, 0 if it is zero.
amd -1 if it is negative.

Fxamples

B SGN(X2)= 1 THEN 300 ELSE 400
sfers control to line 300 if X2 if
Baitive and to line 400 if X2 is zero
W negative.

SGN(X)+2 GOTO 200,300,400 >100 ON SGN{X)+2 GOTO 200,300
Fransfers control to line 200 if X is ,400

& gative, line 300 if X is zero, and

>100 IF SGN(X2)=1 THEN 300 EL
SE 400

[—

T{ Extended BASIC er




CHAPTER

SIN

;-yomat

Format
SIN(;adian-expression) "SIZE
Description bescription

“‘[‘he SIZE command displays the number of unused bytes of memory left in

.the computer. If the Memory Expansion peripheral is attached. the number

fgf bytes available is given as the amount of stack free and the amount of
ogram space free. A byte is the memary space required for such things as

The sine function gives the trigonometric sine of radian-expression. If the
angle is in degrees. multiply the number of degrees by PI/180 to get the
equivalent angle in radians.

Program a;me character or digit, or one TI Extended BASIC keyword.
Th i i =.
e p;ogr:am 10 N thle reht glves (he >ﬁg g_ 3235987755982 *lf the Memory Expansion is not attached, the space available is the amount
sine of several angles. > '2 @fspace left after the space taken up by the program, screen, character
>120 C=45%P1/180 ttern definilions, sprite tables, color tables, string values, and the like is
>130 PRINT SIN(A);SIN(B) Wbtmttd

>140 PRINT SIN(B#PI/180)

>150 PRINT SIN(C) Hf the Memory Expansion is atiached, the space available in the stack is the

'&mount of space left after the space taken up by string values. information

>RUN 0880316241 , bout variables. and the like is subtracted. Program space is the amount of
S 3 Jppace lefi after the space taken up by the program and the values of numeric
.;07 067812 variables is subtracted.
. 1 1
ixamples
MBIZE gives the available memory. >SIZE

13928 BYTES FREE

>SIZE
13928 BYTES OF STACK FREE
24511 BYTES OF PROGRAM
SPACE FREE

168 T Extended BASIC & Tl Extended BASIC 169

't



SOUND subprogram

Format
CALL'SOU‘\ID[durationlfrequencyl,uolumel |. ... frequency4.volumed4] }

Description

The SOUND subprogram tells the computer ta produce tones or noise. The
values given control three aspects of the sound: Duration; frequency: and
volurmne.

Value Range Description
Duration 1 to 4250 The length of the sound in
-1to -4250 thousandths of a second.

Frequency (Tone) 110 to 44733 What sound is played.
‘Noise) -1 to -8
Volume 0 to 30 How loud the sound is.

Duration is from .001 to 4.250 seconds, although it may vary up to 1/60th of
a second. The computer continues performing program staternents while a
sound is being played. When you call the SOUND subprogram, the computer
walts until the previous sound has been compieted before performing the
new CALL SOUND. However. if a negative duration is specified, the previous
sound is stopped and the new one is begun immediately.

Frequency specifies the frequency of the note to be played with a value from
110 to 44733. (NOTE: This range goes higher than the range of human
hearing. People vary in their ability to hear high notes. but generally the
highest is approximately a value of 10000.} The actual frequency produced
by the computer may vary up to 10 percent. Appendix D lisis he
frequencies of some common notes.

A value of -1 to 8 specifies one of eight different types of noise.

Frequency Description

-1 Periodic Noise Type 1

-2 Periodic Noise Type 2

-3 Periodic Noise Type 3

-4 Periodic Noise that varies with the frequency of the
third tone specified

-5 White Noise Type 1

-6 White Noise Type 2

-7 White Noise Type 3

-8 White Noise that varies with the frequency of the
third tone specitied

A maximum of three tones and one naise can be played simultaneously.

Volume specifies the loudness of the note or noise. Zero is loudest and 30 is
softest,

170 TI Extended BASIC

CHAPTER

CALL SOUND(1000,110,0}) plays A
% pelow low C loudly for one second.

f CALL SOUND(4250, - 8.0) plays loud
8 white noise for 4.250 seconds.

ECALL SOUNDIDUR, TONE,VOL)

R plays the tone indicated by TONE for
ka duration indicated by DUR, ar a

§ volume indicated by VOL.

'—Progmm

§ The program on the right plays the
& 13 notes of the first octave that is

$ available on the computer.

e R R

>100 CALL SOUNL{1000,110,0)

>100 CALL SOUND({500,110,0,121
,0,196,3)

>100 CALL SOUND(4250,-8,0)

>100 CALL SOUND(DUR,TONE,V
OL)

>100 X=2A(1/12)
>110 FOR A=1 TD 13

>120 CALL SQUND(100,110%XAA,0

)
>130 NEXT A

Ti Extended BASIC

171



SPGET subprogram

Format
CALL SPGET(word-stri ng.return-string)
Description

;F;lrf; SPGEC’II‘ subprogram returns in return-string the speech pattern that
esponds to word-string. For a camplete description of SPGET, see the

manual that comes with the Spee i
peech Editor Command Module |
State Speech™ Synthesizer (both sold separately}. odule and Sotid

’I‘il;lri:alue of word-string is any string value listed in Appendix L. If it is
given as a literal value, it must be enclosed in quotation marks, The v

return-string is used with SAY. and ’ §
Gesoribed 1 Anpoeg - and may be altered to add suffixes as

alue ol

Program

The program on the right illustrates

K >100 CAL - -
using CALL SPGET. L SPGET("HOW",X$)

>110 CALL SPGET(“ARE",Y$)
>120 CALL SPGET(“YOU',Z$)
>130 CALL SAY(“HELLO" X$,,Y$,
+23)

CHAPTER

SPRITE subprogram A

Fosmat
CALL SPRITE(#sprite-number character-value,sprite-cotor .dot-row.dot-
column. [.row-velocity.column-velocity] [...] )

pescription _
The SPRITE subprogram creates sprites. Sprites are graphics which have a
color and a location anywhere on the screen. They can be set in motion in
- any direction at a variety of speeds, and continue their motion untl it is
" changed by the program of the program stops. They move more smoothly
“than the usual character which jumps from one screen position to another.

Sprite-number is a numeric expression from 1 to 28. 1If the value is that of a
‘gprite that is already defined. the old sprite is de.eted and replaced by the
_ new sprite. If the old sprite has a row- ar column-velocity, and no new one is
. specified. the new sprite retains the old velocities.

" Sprites pass cver lixed characters on the screen. When two or more sprites
are coincident, the sprite with the lowest sprite number covers the other

*. gprites. While five or more sprites are on the same screen row, the one(s)
with the highest sprite number(s) disappear.

.- Character-value may be any integer frem 32 to 143. See the CHAR

+ subprogram for information on defining characters. The character-value can
" be changed by the PATTERN subprogram. The sprite is defined as the

;" character given and, in the case of double-sized spriles, the nexi three
"characters. Sce the MAGNIFY subprogram for more information.

k)

i Sprite-color may be any numeric expression from 1 to 16. It determines the
" foreground color of the sprite. The background color of a sprite is always 1.
transparent. See the COLOR and SCREEN subprograms for more
information.

Dot-row and dot-column are numbered consecutively starting with 1 in the
upper left hand corner of the screen. Dot-row can be from 1 to 192 and dot-

"%{'column can be from 1 to 256. iActually dot-row can go up to 256. but the

¥ positions from 193 through 256 are off the bottom of the screen ) The
position of the sprile is the upper left hand corner of the character(s) which

o

% define it.
% - [nformation about the position of a sprite can be found using the POSITION.
@ COINC. and DISTANCE subprograms. The locaton of a sprite can be

' changed using the LOCATE subprogram. COLOR changes the coor ofa

sprite. Sprites can be deleted with the DELSPRITE subprogram.

. When a breakpoint occurs or the program stops. sprites ccase to exist. They
" do not reappear with CONTINUE.

.
172 3
'l Extended BASIC z Tl Extended BASIC 173



SPRITE subprogram

Options

Row-velbcity and column-velocity may optionally be specified when the
sprite is created. If both row- and column-velocity are zero, the sprite is
stationary. A positive row-velocity moves the sprite down and a negative
value moves it up. A positive column-veloctty moves the sprite to the right
and a negative value moves it 10 the lefi. If both row-velocity and colurnn-
velocity are non-zero, lhe sprite moves at an angle in a direction determined

by the actual values.

Row- and column-velacity may be from — 128 tc 127. A value close to zero is
very slow. A value far from zero is very fast. When a sprite comes to the edge
of the screen, it disappears and reappears in the corresponding position on
the other side of the screen. The velocity of a sprite may be changed using

the MOTION subprogram.

Programs

The following three programs show some possibe uses of sprites, The third
one uses all the subprograms that can relate to sprites except for COLOR and

DISTANCE.

Line 140 creates a dark blue sprite in
the center of the screen and a dark
red sprite in the upper left corner of
the screen. Line 150 creates a white
sprite near the upper right corner of
the screen and starts it moving
slowly at a 45 degree angle down
and to the right. The sprite is an
exclamation point.

Line 160 creates a sprite at the
upper left corner of the screen and
starts {t moving very fast at a 45
degree angle up and to the right.

>100 CALL CLEAR

>110 CALL CHAR(96,"'FFFFFFFFFF
FFFFFF")

>120 CALL CHAR(98, '183C7EFFFF
7E3018")

>130 CALL CHAR{100, FOOFFOQFF
OOFFOOF )

>140 CALL SPRITE(#1,96,5,92,1
24,#2,100,7,1,1)

>150 CALL SPRITE(#28,33,16,12
,48,1,1)

>160 CALL SPRITE(#15,98,14,1,
1,127,-128)
>170 GOTO 170
(Press SHIFTC to stop the
progran. )

174

TI Exlended BASIC

— CHAPTER
‘gPRITE subprogram

The program on the right makes a
" pather spectacular use of sprites.
“gine 110 defines character 96.

%gine 150 defines the sprites. 28 in
“all. The spritenumber is the current
‘yalue of A. The character-value is
¥£96. The spritecolor is INT(A/3) - 3.
B e starting dot-row and dot-column
» 99 and 124, the center of the

>100 CALL CLEAR

>110 CALL CHAR(96,'0008081C7F
1C0808")

>120 RANDOMIZE

>130 CALL SCREEN(2)

>140 FOR A=1 TO 28

>150 CALL SPRITE(#4,96,INT{A/
3)+3,92,124,A%INT(RND¥*4 . 5)-2
.25+A/2*SGN(RND-.5) , AXKINT(RN
D*4.5)~2.25+A/2*SGN(RND—.5))
>160 NEXT A

>170 GOTO 140
(Press SHIFT C to stop the
progran. )

.

& 170 causes the sequence to repeat.

2 i > S that can relate to sprites
E The following program uses all the subprograms
B except for COLOR and DISTANCE. They are CHAR. COINC, DELSPRITE.

OCATE, MAGNIFY. MOTION, PATTERN, POSITION, and SPRITE.

he program creates two double sized magnilfied sprites in the shape of a

Frerson, walkirg along a floor. There is a barrier that one of them passes ,

' rough and the other jumps through. The one that jumps mrough“%)es a}t

Biittle faster after each jump, so eventually it ca.tches t.he other one-. en i

B does, they each become double size unmagnified sprites and continue st

:-;walking. When they meet the second time. the one that has been going faster

& disappears and the other continues walking.

; »>100 CALL CLEAR

>110 51$="0103030103030303030
303030303030380C0C080C0C0OCOC
0COCOCOCOCOCOLCED

>120 52$="0103030103070F1B1BO
30303060C0C0OESCCOCO80C0EOFQD
8CCCOCOC060303038™

>130 COUNT=0

>140 CALL CHAR(96,51%)

>150 CALL CHAR(100,528)

»160 CALL SCREEN(14)

»170 CALL COLOR(14,13,13)
>180 FOR A=19 TO 24

>190 CALL HCHAR(A,1,136,32)
>200 NEXT A

¥ Line 130 sets lhe meeting counter to
i zero.

j ‘_ Lines 170 through 200 build the
: floor.

TI Extended BASIC

175



SPRITE subprogram

Lines 210 through 240 build the
barrier. -

Line 270 sets the slarl.ng speed of
the sprite that will speed up.

Line 290 sets the sprites in motion.

Line 300 creates the illusion of
walking.

Line 320 checks to sce if the sprites
have met.

Line 330 transfers control if the
sprites have mecet. Lines 340 and 350
check to see if the sprite has reached
the barrier and transfer control if it
has.

Line 360 loops back to continue the
walk, Lines 370 through 460 handle
the sprites running inlo each other.,
Lines 380 and 390 stop them.

Line 400 checks to see if it is the first
meeting. Line 410 increments the
meeting counter. Line 420 {inds their
position.

Line 430 makes them smaller.
Line 440 puls them on the floor and
moves the fast one slightly ahead.

Line 450 starts them moving again.

>210 CALL COLOR(13,15,15)

»>220 CALL VCHAR(14,22,128,6)

>230 CALL VCHAR({14,23,128,6)

>240 CALL VCHAR(14,24,128,6)

»>250 CALL SPRITE(#1,9¢,5,113
,129,42,96,7,113,9)

>260 CALL MACNIFY(4)

>270 XDIR=4

»280 PAT=2

>290 CALL MOTION(#1,0,XDIR,#2
»0,4)

>300 CALL PATTERN(#1,68+PAT,#
2,98-PAT)

>310 PAT=-PAT

>320 CALL COINC(ALL,CC)

>330 IF CO<>0 THEN 37C

>340 C4LL POSITION(#1,YP0S1,X
POS1)

>350 IF XP0S1>136 AND XPOS1<1
92 THEN 470

>360 GOTO 300

>370 REM COINCIDENCE

>380 CALL MOTION(#1,0,2,#2,0,
0}

>390 CALL PATTERN(#1,95,#2,96
)

>400 1F COUNT>0 THEN 540

>410 CCUNT=COUNT+1

>420 CALL PCSITION(#1,(P0S1,X
POS1,#2,YP0OS2,XP0OS2)

>430 CALL MAGNIFY(3)
>440 CALL LOCATE(#1,YP0S1+16,
XPOS1+8,#2,YPOS2+16, XPOS2)

>450 CALL MOTION(#1,0,¥DIR,#2
s0,4)
>460 GOTO 340

176

TI Extended BASIC

: SPRITE subprogram

CHAPTER

Lines 470 through 530 handle the
fast sprite jumping through the
. parrier. Line 480 stops it. Line 490
. finds where it is.

." Line 500 puts it at the new location
i peyond the barrier.

¥ Lines 510 and 520 start it moving
? again, a little faster.

@

Lines 540 through 640 handle the

":_.;.gsecond meeting.

:'Line 560 starts the slow sprite

# moving, while line 570 deletes the
¥ fast sprite. Lines 580 through 630

make the slow sprite walk 20 steps.

>470 REM #1 HIT WALL

>480 CALL MOTION(#1,0,¢)

>490 CALL POSITION(#1,YPOS1,X
POS1)

>500 CALL LOCATE(#1,YPCS51,193
)

>510 XDIR=XDIR+1

>520 CALL MOTION(#1,0,XDIR)

>530 GOTC 3C0

>540 REM SECOND COINCILENCE

»>550 FOR DELAY=1 TO 5C0 :: NE
XT DELAY

>560 CALL MOTICN(#2,0,4)

>570 CALL DELSPRITE(#1;

>580 FOR STEP1=1 TO 20

>590 CALL PATTERN{#2,100)
>600 FOR DELAY=1 TO 20 :: NEX
T DELAY

>610 CALL PATTERN(#2,96)

>620 FCR DELAY=1 TO 20 :: NEX
T DELAY

>630 NEXT STEP1

>64() CALL CLEAR

TI Extended BASIC

177



SQR

Format -
SQR(numeric-expression)

Description

The SR lunction retumns the positive square rootl of numeric-expressiort.
SQR(X} is equivalent to X A(1/2}). Numeric-expression may not be a negative
number.

Examples

PRINT SQR(4] prints 2. >100 PRINT SQR(4)

X =SQR(2.57E3) sets X equal to the >100 X=SQR{2.57L5)
square root of 257,000 which is
506.8516742.

STOP

Format
STOP

Description

The STOP stalemnent stops program execution. It can be used
interchangeably with the END statement except that it may not be placed
after subprograms.

Program

The program on the right illustrates >»>100 CALL CLEAR
the use of the STOP statement. The >110 TOT=0
program adds the numbers from 1o >120 NUMB=1

100. >130 TOT=TOT+NUMB
>140 NUMB=NUMB+1
>150 IF NUMB>100 THEN PRINT T
0T::31C0P
>160 GOTO 130

B
178 TI Extended BASIC ﬁ“ Extended BASIC

CHAPTER

Format
3 gTRS(numeric-expression)

;. Description
ﬁ The STRS function returns a string equivalent to numeric-expresston. This
"'-’,.a,llows the functions, statements, and commands that act on strings to be

# used on the character representation of numerlc-expresston. The STRS

¥ function is the inverse of the VAL function.

Exumples
#'NUMS = STRS(73.6) sets NUMS equal
&t 786"

4.

>100 NUM§=STR${78.6)

} LS =STRS(3E15) sets LLS equalto  >100 LL$=STR$(ELS)

g3.E15"

ﬂ[B:STRS{A‘4} sets [$ equal to a

# gtring equal to what ever value is
‘obtained when A is multiplied by 4.

ZFor instance, if A is equal to - 8,18

248 set equal to - 327,

>100 I$=STR$(A%*4)

179



e

SUB

Format
SUB subprogram-name [(parameter-list)]

Description

The SUB statement is the first statement in a subprogram. Subprograms are
used when you wish to separate a group ol statements from the main
program. You may use subprograms to perform an operation several times in
a program or in several different programs or to use variables that are
specific to the subprogram. The SUB statement may not be in an IF-THEN-
ELSE statement.

Subprograms are cal.ed with CALL subprogram-name ((parameter-list)],
Subprograms are ended with SUBENLD, and left when either a SUBEND or a
SUBEXIT staternent is executed. Control is returned to the statement
{ollowing the statement thal called the subprogram. You must never transfer
control out of a subprogram with any statement except SUBEND or
SUBEXIT. This includes passing control with ON ERROR.

When a subprogram is in a program. it must follow the main program. The
structure of a program must be as follows:

Start of Main Program
Subprogram Calls

The program will stop here without
a STOF or END statement.
Subprograms are optional.

End of Main Program

Start of First Subpregram

Nothing may appear between
subprograms except remarks and
the END statement,

End of First Subprogram

Start of Second Subprogram

Only remarks and END may appear
after the subprograms.

End of Second Subprogram

End of Program

'sUB

CHAPTER
Optlons

‘Al variables used in a subprogram other than those in parameter-list are
focal to that subprogram, so vou may use the same variable names (hat are
used in the main program or in other subprograms, and alter their values,
without having any effect on other variables. Likewise. the values of

variables in the main program or other subprograms have no effect on the
.values of the variables in the subprogram. (However, DATA statements are

‘available to subprograms)

-_E;Communicating values (o0 and from the main program is done with the

optiona.l parameter-list. The parameters need not have the same names as in
the calling staternent, but they must be ol the same data type (numeric or
‘gtring}. and in the same order as the items in the CALL. Il simple variables
passed to subprograms have their values changed in the subprogram, the
“walues of the variables in the ma:nn program are also changed. An array

-gnlement such as A(1) in the parameter list of the calling statement is also
.““changed in value in the main program when control is returned to the main

upmgram

value that is given in the calling statement as an expression is passed as a
‘Walue only and changes in the value in the subprogram do not change values
an the main program. Entire arrays are passed by reference, so changes in
‘lements in the subprogram also change the values of the elements of the
Mrray in the main program. Arrays are indicated by following the parameter
Swame with parentheses. [[ the array has more than one dimension, a comma
- ust be placed inside the parentheses for each additional dimension.

i 1} f you wish, you may pass valucs only lor simple variables by enclosing them
#n parentheses, Then the value can be used in the subprogram. but it is not

thanged in the return to the main program. For example, CALL SPRG1({A))
asses the value of A to a subprogram that starts SUB SPRG1(X). and allows
#What value to be used in X, but does not change the value of A in the main
Program if the subprogram changes the value of X.

e

180

TI Extended BASIC

i;TI Extended BASIC 181



SuB

Examples

SUB MENU marks the beginning of a
subprogram. No parameters are
passed or returned.

SUB MENU(COUNT .CHOICE) marks
the beginning of a subprogram. The
variables COUNT and CHOICE may
be used and/or have their values
changed in the subprogram and
returned to the variables in the same
position in the calling statement.

SUB PAYCHECK(DATE,Q.SSN,
PAYRATE.TABLE{,)) marks the
beginning of a subprogram. The
variables DATE, Q, SSN, PAYRATE,
and the array TABLE with two
dimensions may be used and/or have
their values changed in the
subprogram and returned o the
variables in the same position in the
calling statement,

>100 SUB MENU

>100 SUB MENU(COUNT,CHOICE) ’

>100 SUB PAYCHECK(DATE,Q,SSN, !
PAYRATE, TABLE(, ))

182

Tl Extended BASIC

CHAPTER

program

“The program on the right illustrates
_he use of SUB. The subprogram
:WNU had been previously saved

with the merge option. It prints a
#menu and requests a choice. The

#inain program tells the subprogram
$ow many choices there are and

fetermine what program to rurn.

ginning of subprogram MENU.

ote that this R is not the same as
Mhe R used in lines 100 and 110 in
Ahe main program.

>100 CALL MENU(5,R}

>110 ON B GOTO 120,130,140,15
0,160
>120 RUN
>130 RUN
>140 RUN

“DSKL.PAYABLES”

“DSK1.RECEIVE"

~DSK1.PAYROLL"

>150 RUN “DSK1.INVENTOEY"

>160 RUN “DSK1.LEDGER"

>170 DATA ACCOUNTS PAYABLE,AC
COUNTS RECEIVABLE,PAYROLL,IN
VENTORY , GENERAL LEDGER

510000 SUB MENU{COUNT,CHQICE)

>10010 CALL CLEAR

10020 IF COUNT>22 THEN PRINT
“TOO MANY ITEMS" :: CHOICE=
0 :: SUBEXIT

>10030 RESTORE

>10040 FOR R=1 TO COUNT

>10050 READ TENP$

>10060 TEMP$=SEGH(TEMPS,1,25)
»10070 DISPLAY AT(R,1):R;TEMP
$

>10080 NEXT R

>10090 DISPLAY AT(R+1,1):"YOU
R CHOICE: 1"

>10100 ACCEPT AT(R+1,1%)BEEP
YALIDATE(DIGIT)SIZE(-2) :CHOI
CE

>10110 IF CHOICE<1 OR CHOICE>
COUNT THEN 10100

>10120 SUBEND

2Tl Extended BASIC

183



SUBEND

Format -
SUBEND

Description

The SUBEND statement marks the end of a subprogram. When SUBEND is
execuled, control is passed to the statement following the staternent that
called the subprogram. The SUBEND stalement must always be the last
statement {n a subprogram. The SUBEND statement may not be in an IF-
THEN-ELSE statement. The only statements thal may immediately follow a
SUBEND statement are REM, END, or the SUB statement for the next
subprogram.

TAB

" Format
‘ TAB(numeric-expression)

Description

SUBEXIT

Format
SUBEXIT
Description

The SUBEXIT statement allows leaving a subprogram before the end of the
subprogram (indicated with SUBEND). When it is executed, control is passed
to the statement following the statement that called the subprogram. The
SUBEXIT slatement need not be presentin a subprogram. )

| PRINT 356:TAB(18)."NAME" prints
| 356 at the beginning of the line and
| NAME at the eighteenth position of

§ Lhe line.

| PRINT “ABCDEFGHIJKLM ™ TAB(5):

b ~NOP" prints ABCDEFGHIJKLM at
f the beginning of the line and NOP at

b DISPLAY AT(12.1):"NAME":TAB
" (15);"" ADDRESS ' displays NAME at

1854 T Extended BASIC

CHAPTER

" The TAB function specifies the starting position for the next print-item in a

¥ PRINT, PRINT...USING, DISPLAY, or DISPLAY...USING statement. if

. numeric-expression is greater tkan the length of a record for the device on

E which the priniing is being done {for example: 28 for the screen. 32 for the

b thermal printer, the specificd vaiue for a file on a diskette or cassette), then it
I js repeatedly reduced by the record length until it is between 1 and the

¥ record length.

b If the number of characters already printed on the current record is less than
b or equal to numeric-expression, the next print item is printed beginning on

f the position indicated by numerlc-expression, If the number of characters

¢ already printed on the current record is greater than the position indicated

! by numeric-expression, the nex! print-item is prinied on the next record

¥ beginning in the positon indicated by numeric-expression.

& The TAB function is treated as a print-itemn, so it must have a print separator

{colon. semicolon, or comma) before and/or after i.. The print separator

. before TAB is evaluated before the TAB function. Normally semicolons are
| used before and after TAB.

.t Examples
- PRINT TAB(12):35 prints the

>100 PRINT TAB(12);35
number 35 at the twelfth position.

»100 PRINT 356;7AB(18); "NAME"

>100 PRINT “ABCDEFGHIJKLM";TA
B(5); "NOP"

the fifth positicn of the next line.

»>100 DISPLAY ATI12,1}: NAME";
TAB(15); 'ADDRESS"
the beginning of the twelfth line on

; the screen and ADDRESS at the
b fifteenth position on the twelfth line
- of the screen.

" TI Fxrended BASIC 185



TAN

Format
TAN(radian-expressioin)

Description

The tangent function gives the trigonometric tangent of radian-expression. If
the angle is in degrees, multiply the number of degrees by PI/180 to get the
equivalent angle in radians.

Program

The program on the right gives the
tangent of several angles.

>100 4=.7853981633973
>110 B=26.565051177
>120 (=45*PI/180
>130 PRINT TAN(A);TAN(B)
>140 PRINT TAN{B*PI/180)
>150 PRINT TAN{(C)
>RUN

1,  7.17470553

.5

1

TRACE

Format
TRACE

Description

The TRACE command causes each line number to be displayed on the
screen before the staiements on that line are executed. This enables you to
follow the course of a program as a debugging aid. The TRACE command
may be used as a statement. The elfect of the TRACE command is canceled
when the NEW command or UNTRACE command or statement is performed.

Example
TRACE causes the computer to >TRACE
display a trace of the lines of a 3100 TRACE

program on the screen.,

186 TI Extended BASIC

NBREAK

CHAPTER

brormat
BREAK [line-list)
i scription

e UNBREAK command removes all breakpoints. It can optionally be set
gor only those in line-list. UNBREAK can be used as a statement.
gExamples

JNBREAK removes all breakpoints, >UNBREAK

>420 UNBREAK

BREAK 100,130 removes the
kpoints from lines 100 and 130.

>UNBREAK 100,130
>320 UNEREAK 100,130

NTRACE

TRACE can be used as a statement.
ample
TRACE removes the effect of >UNTRACE

>420 UNTRACE

“—

i“ Extended BASIC
&

187



a4 CHAPTER
VAL IVCHAR
Format ' COLUMNS
t 2 4 & B 10 12 14 le 18 20 22 24 2 2/ 30 32
VAL(string-expression) th3d s b s b e b b bs bzl bz dbasd ar o b d
Description 2_‘1 '
The VAL function returns the number equivalent to string-expression. This 3
allows the functions, statements, and commands that act on numbers te be 4—
used on string-expression. The VAL function is the inverse of the STRS 5
function. “";
Examples . R—
NUM=VAL{"78.6") scts NUM equa >100 NUM=VAL("78.6") w»)
lo 78.6. 11
P
LL=VAL("3E15") sets LL equal to >100 LL=VAL("3E15") 5
3.El5. 14—~
15
16—
17
VCHAR -
19
20—+
21
Format 22—~
CALL VCHAR(row.column.character-code [.repetition|) - ij
Description
The VCHAR subprogram places a character anvwhere on the display screen amples
and optionally repeats it vertically. The character with the ASCII value of bai L VCHAR(12,16.33) places >100 CALL VCHAR(12,16,33.
) * A i ] ’ '

character-code is placed in the position described by row and column and is

; o 4 haracter an excle i i
repeated ver:ically repetition times. 33 (an exclamation point)

N row 12, column 16.

ALL VCHAR(1 1.ASC('""),768) >100 CALL VCHAR(1,1,aS8C(-!"),
places zn exclamation point in row 768)

g. colurmn 1, and repeats it 768

imes, which fills the screen.

A value of 1 for row indicates the top cf the screen. A value of 24 is the
bottom of the screen. A value of 1 for column indicates the left side of the
screen. A value of 32 is the right side of the screen. The screen can be
thought of as a grid as shown below.

ALL VCHAR(RC.K.T} places the >100 CALL VCHAR(R,C,K,T)
¥haracter with an ASCII code of K in
¥ow R. column C and repeals it T

Extended BASIC 189

188 TI Extended BASIC



VERSION subprogram

Format
CALL V‘ERSION[numeric-variable]

Description
The VERSION subprogram returns a value indicating the version of BASIC
that is being used. TI Extended BASIC returns a value of 100.

Example
CALL VERSION(V) sets V equal to
100.

>100 CALL VERSION(V)

190 T1 Extended BASIC

S

Appendice

- The following appendices give useful information concerning TI Ex:ended
BASIC,

List of [llustrative Programs

List of Commands. Statements, and Functions

ASCII Codes

Musical Tone Frequencies

jAppendix E: Character Sets

Pattern-Identifier Conversion Table
Color Codes

High Resoclution Color Combhinations
Split Console Keyboard

Character Codes for Split Keyboard

b Appendix G:

Mathemaiical Functions
List of Speech Words
¢ Adding Suffixes {o Speech Words

Error Messages

Tl Extended BASIC

191



List of

lllustrative Programs

ELEMENT
ILLUSTRATED

ACCEPT
CALL
CHAR

CHRS
CLEAR

COINC

Cos

DATA
DELETE
DISPLAY

ERR
FOR-TO-STEP
GosuUB

GOTO
IF-THEN-ELSE
IMAGE

INPUT

INPUT (with files)
JOYST

KEY

LINPUT

LOCATE

LOG

LINES

DESCRIPTION

Codehreaker Game
Eniry of 20 names

PAGE

27
48

CLEAR and user written subroutine 55

1. Moving figure

2. Resetting characters

List of ASCII codes
(Simple example)
(Simple example)
(Simple example)
(Simple example)
(Simple example}
(Simple example)
Draw on screen
(Simple example)
Design

Probability

Add 1 through 100
Sequence numbers
(Simple example)
(Simple exampie}
Writes letter
(Simple example)
Moves sprite
Moves sprite
(Simple example)
(Simple example)
Log to any base

58
58
60
6]
61
63
69
71
74
78
84
87
90
91
96
99
100
103
106
108
109
113
116
17

192

Tl Extended BASIC

: APPENDIX
ELIST OF ILLUSTRATIVE PROGRAMS
. ELEMENT
FILLUSTRATED LINES DESCRIPTION PAGE
:MAGNIFY 17 (Simple example} 12G
: MERGE 13 Moves sprite 122
8 MOTION 8 Moves sprite 125
E NEXT 6 (Simple example) 127
t NUMEER 4 (Simple example) 128
‘ON BREAK 11 (Simple example) 130
¥ ON ERROR 15 (Simple examplce) 132
¥ ON...GOSUB 20 Choose with a menu 134
EON...GOTO 19 Choose with a menu 136
b ON WARNING 8 (Simple example) 137
PATTERN 18 Rolling wheel 142
} POS 8  Breakup sentence 145
f PRINT 7 (Simale example) 149
L RANDOMIZE 5 (Simale example} 151
} REC 12 (Simpole example} 1563
'RETURN (with GOSUB) 18 Figure interest 157
f RETURN (with ON ERROR) 13 Handle error 158
' RUN 12 Chogse with a menu 162
E SAY 4 (Simple example) 164
£ SIN 6 (Simple example) 168
F SOUND 4 Play first 13 notes 171
t SPGET 4 (Simple example) 172
g SPRITE 8 {Simple example) 174
) 8 Creation of stars 175
s 55 Walking spritvs 175
| STOP 7  Add 1 through 100 178
-8SUB 21 Chogse with a menu 183
¥ TAN 6 (Simple example) 186
:
" Tl Extended BASIC (93



Commands, Statements,
and Functions

The following is a list of all T] Extended BASIC commands, statements, and
functisns. Commands are listed first; if a command can also be used as a
statement, the letter *'S" s listed to the right of the command. Commands
that can be abbrevia:ed have the acceptable abbreviations underlined. Next
is a list of all TI Extended BASIC statements: those that can also be used as
commands have a "'C’" after them. Finally, there is a list of all TI Extended

BASIC funciions.

BREAK S
BYE
CONTINUE
DELETE S
LIST

ACCEPT C

CALL

CALL CHARC
CALL CHARPAT C
CALL CHARSET C
CALL CLEAR C
CLOSE C

CALL COINC C
CALL COLOR C
DATA

DEF

CALL DELSPRITE C
DIMC

DISPLAY C
DISPLAY USING C
CALL DISTANCE C
END

CALL ERR C

FOR C

CALL GCHAR C
GOSUB

GOTO

MERGE
NUMBER

OLD
RESEQUENCE
RUN S

CALL HCHAR C
IF THEN ELSE
IMAGE

CALL INIT C
INPUT

INPUT REC
CALL JOYST C
CALL KEY C
[LET] C

CALL LINK C
LINPUT

CALL LOADC
CALL LOCATE C
CALL MAGNIFY C
CALL MOTION C
NEXT C

ON BREAK

ON ERROR

ON GOSUB

ON GOTO

ON WARNING
OPEN C

TI Extended BASIC Commands

SAVE

SIZE
TRACE S
UNBREAK S
UNTRACE 5

TI Extended BASIC Statements

OPTION BASE
CALL PATTERN C
CALL PEEK C
CALL POSITION C
PRINT C

PRINT USING C
RANDOMIZE C
READ C

REM C

RESTORE C
RETURN

CALL SAY C
CALL SCREEN C
CALL SOUND C
CALL SPGET C
CALL SPRITE C
STOP C

5SuB

SUBEND
SUBEXIT

CALL VCHAR C
CALL VERSION C

§ COMMANDS, STATEMENTS, AND FUNCTIONS

APPENDIX

194

Tl Extended BASIU

TI Extended BASIC Functions

LEN
LOG
MAX
MIN
Pl
POS
REC
RND
RPTS

; : TI Extended BASIC

195



ASCIl| Codes

APPENDIX

The following predefined characters may be printed or displayed on the screer.

ASCl
CODE

ASCIHI
CODE
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62

CHARACTER
{cursor)
(edge character)
(space)
! (exclamation point)
" (quote}

# (number or pound sign}

S (dollan)
% (percent)
& (ampersand)
(apostrophe)
{ (open parenthesis)
) (close parenthesis)
* (asterisk)
+ (plus)
(comma)
- (minus)
(period)
(slash)

/

a
1
2
3
4
5
6
7
8
9

(colon)
(semicolon)
< (less than)
= (equals)
> (greater than)

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95

CHARACTER
? [question mark)
@ (at sign)

(open bracket)
(reverse slash)
(close bracket)
(exponentiation)

TT/ TN SCCHUDO T OZEr XL I OTIOOT »

__ (underline)

The following key presses may aiso be cetected by CALL KEY.

1
4
7
9
1
13
15

SHIFT A (AID)
SHIFT G (INS)
SHIFT T (ERASE)

SHIFT D (RIGHT ARROW)

SHIFT E (UP ARROW)
ENTER
SHIFT Z (BACK}

3
6
8
10
12
14

SHIFT F (DEL)

SHIFT R (REDO)

SHIFT § (LEFT ARROW)
SHIFT X (DOWN ARROW)
SHIFT v (CMD)

SHIFT W (BEGIN)

_m;a-n\;?t@f‘-a;.u_ R

196

T! Extended BASIC

. Musical Tone Frequencies

FREQUENCY
110
117
123
131
139
147
136
165
175
185
196
208
220

220
233
247
262
277
294
311
330
349
370
392
415
440

P

NOTE

A
A* B
B

C (low C)
cé
D

D#  E'
E

F
Fé, g
G

G# A

A {below middle C)
AJbeiow middle C)
A¢ B

B

C (middle )
ct D’

D

D#  E’

E

F

F# G

G

G% . A

A (above middle C)

FREQUENCY
440
466
494
523
554
587
622
659
698
740
784
831
880

880

932

984
1047
1109
1175
1245
1319
1397
1480
1568
1661
1760

| The lollowing table gives the {requencies {rounded to integers} of four octaves
E of the tempered scale [one half step between notes). While this list does not

¢ represent the entire range of tones that the computer can produce, it can be

! helpful for programming music. 7

NOTE
A [above middle C)
A% B?
B
C {high C)
c#, Db
D
D¢ E?
E
F
F¢ G

G
G#. AY
A (above high ()

A [above high C)
A% Br

B

C

Cc# Dp°

D

D#, EP

E

F

F# G?

G
G#F . A
A

Tl Extended BASIC

197



APPENDIX APPENDI
Character Sets olor Codes
SET ASCIH CODES SET ASCII CODES COLOR CODE COLOR CODE
o 30-31 ' Transparent 1 Medium Red 9
1 32-39 8 88-95 . Black 2 Light Red 10
2 40-47 9 96-103  Medium Green 3 Dark Yellow 11
3 48-55 10 104-111 Light Green 4 Light Yellow 12
4 56-63 11 112-119 Dark Elue 5 Dark Green 13
5 64-71 12 120-127 Light Blue 6 Magenta 14
6 72-79 13 128-135 Dark Red 7 Gray 15
7 80-87 14 136-143 Cyan 8 White 16
- APPENDIX
Pattern-Identifier F
[ ]
Conversion Table
BINARY CODE HEXADECIMAL
Blocks (O=off: 1 =on) CODE
0000 0
0001 1
0010 2
0011 3
0100 4
010} )
0110 6
0111 7
1000 8
10C1 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F
198 T1 Extended BASIC TI Extended BASIC 199




Color Combinations

APPEND X

The folfowing color combinations produce the sharpest, clearest character
resolution.

SR ECECECEERS
_—0 0w d X

13, 8
13. 15
13,12
7.15
7,012
3, 12

Black on Cyan

Btack on Dark Red

Black an Light Blue

Black on Medium Green
Dark Blue on Cyan

Dark Blue on Light Blue
Dark Blue on Magenta
Dark Green on Cyan

Dark Green on Gray

Dark Green on Light Yellow
Dark Red on Gray

Dark Red on Light Yellow
Medium Green on Light Yellow

SECOND BEST

Biack on Dark Blue 2,11
Black on Light Green 2,10
Black on Light Yellow 13. 10
Dark Green on White 7,16
Light Blue on Gray 6. 4
Light Blue on White 4, 16
THIRD BEST
Black on White 5, 12
Dark Red on Medium Red 4,12
Magenta on Gray 14, 16
Medium Green on Dark Yellow 3, 15
Medium Red on Gray 9, 10
Medium Red on Light Yellow 9. 16

White on Dark Red

FOURTH BEST
£. 16
7.4
5.2

Cyan on Black

Dark Red on Black

Gray on While

Light Green on Black

Light Red on White

Medium Red on Light Green

BEST

2,13
2,15
2, 14
2.9

5. 15
5, 4

5 16
13. 11
13, 4
13. 3
7. 10
14, 2
3. 15

10. 2
14,12
16. 6

Elack on Dark Green

Black on Gray

Black on Magenta

BFlack on Medium Red

Dark Blue on Gray

Dark Blue on Light Green
Dark Bluc on White

Dark Green on Dark Yellow
Dark Green on Light Green
Dark Green on Mediwn Green
Lark Red on Light Red
Magenta on Light Red
Medium Green on White

Black on Dark Yellow
Black on Light Red

Dark Green on Light Red
Dark Red on White

Light Blue on Light Green
Light Green on White

Dark Blue on Light Yellow
Light Green on Light Yellow
Magenta on White

Medium Green on Gray
Medium Red on Light Red
Medium Red on White

Cyan on White

Dark Red on Light Green
Light Blue on Black
Light Red on Black
Magenta on Light Yellow
White on Light Blue

H

L- plit Console Keyboard

APPENDIX

Key-unit 1 Key-unit 2
I
19 7 g 9 10119 7 8 9 10
r e [ P_! ‘: ] | 5 \ 1T P
? 3 4 5 |t 8 7 8 9 0 i
L I __.J ] L__1 ! L
18 4 5 6 11! 18 4 5 6 11
I Ta P — - iy
a W ; 3] T i Y W] l a =
._,__.l
17 ] 2 3 12 4 17 ! 2 3 12
] - — 1 . . N
inece AJ g ‘ ) F i- G H J ! K I |
==9
i6 15 0 11 131 16 15 0 14 13
' i 2 : H i
A z | X C I N ] |
' :
SPACE BAR
1 APPENDIX
iCharacier Codes
for Split Keyboard
. CODE KEYS* CODE KEYS*
0 X. M 10 5.0
1 A.H 11 T.P
2 S, J 12 F. L
3 D. K 13 V, ENT
4 W, U 14 C..
5 E. I 15 Z.N
6 R.O 16 SHIFT. B
7 2.7 17 SPACE, G
8 3.8 18 Qv
9 4,9 19 1.6

b *Note that the first key listed is on the left side of the keyboard and the
b second key listed is on the right side of the keyboard.

| T Extended BASIC

201



Mathematical Functions

APPENDIX

, List of Speech Words

The following mathematical functions may be defined with DEF as shown.

Function

Secant

Cosecant

Cotangent

Inverse Sine

Inverse Cosine

Inverse Sccant

Inverse Cosecant

Inverse Cotangent
Hyberbolic Sine

Hyberbolic Cosine
Hyperbolic Tangent
Hyperbolic Secart
Hyperbolic Cosecant
Hyperbolic Cotangent
Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbaolic Tangent
Inverse Hyperbolic Secant
Inverse Hyperbolic Cosecant
Inverse Hyperhole Cotangent

Ti Extended BASIC statement

DEF SEC(X)=1/C0S(X)

DEF C8C(X)=1/3°N(X}

DEF COT{X)=1/TAN(X}

DEF ARCSIN(X)=ATN(X/SQR[1-X*X)}

DEF ARCCOS{X)=-ATN(X/SQR(1-X*X))}+PI/2
DEF ARCSEC(X)=ATN(SQR{X*X-1) }+(SGN(X)-1)*PI/2
DEF AFCCSC{X)=ATN{1/SQR{X*X-1))+(8CGN(X)-1)*PI /2
DEF ARCCOT(X)=PI/2-ATN(L) or =PI /24ATN{-X}

DEF SINH(X)=(EXP(X)-EXP_-X))/2

DEF CCSH{X)={EXP{X)+EXP -X})/2

DEF TANH({X)=-2%EXP{-X}/ EXP(X)+EXP(-X))+1

DEF SECH=2/(EXP(X)+EXP(-X})

DEF CSCH=2/ (EXP(X)-EXP(-X))

DEF CCTH(X)=2*¥EXP(-X) /(EXP{X)-EXP{-X)}+1

DEF ARCSINH({X}=LOG(X+SQR{X*X+1))

DEF ARCCOSH(X)=LOG(X+SQR({X*X-1))

DEF ARCTANH(X)=LOG((1+X)/(1-X))/2

DEF ARCSECH(X)=LOG( (1+SQR(1-X*X))/X)

DEF ARCCSCH(X)=LOG{ (SGNIX)*SQR{X*X+1}+1) /X)
DEF ARCCOTH(X)=LOG{{X+1)/{X-1}}/2

202

T! Extended BASIC

O@®W-1®NE WK -0

APPENDIX

L

k. The following is a list of all the letters, numbers, words, and phrases that can

be accessed with CALL SAY and CALL SPGET. See Appendix M for

- INEGATIVE)
+ (POSITIVE)
(POINT)

A (a)

Al (3]

. ABOUT
t AFTER
- AGAIN

ALL
AM

" AN

AND
ANSWER
ANY
ARE

AS
ASSUME
AT

B

BACK
BASE

BE
BETWEEN
BLACK
BLUE
BOTH
BOTTOM
BUT

BUY

BY

BYE

C

CAN
CASSETTE

. instructions on adding suffixes to anything in this list.

CENTER
CHECK
CHOICE
CLEAR
COLOR
COME
COMES
COMMA
COMMAND
COMFPLETE
COMFPLETED
COMPUTER
CONNECTED
CONSOLE
CORRECT
COURSE
CYAN

D

DATA
DECIDE
DEVICE
DID
DIFFERENT
DISKETTE
DO

DOES
DOING
DONE
DOUBLE
DOWN
DRAW
DRAWING
E

EACH
EIGHT
EIGHTY
ELEVEN
ELSE

END

ENDS
ENTER
ERROR
EXACTLY
EYE

F
FIFTEEN
FIFTY
FIGURE
FIND
FINE
FINISH
FINISHED
FIRST
FIT

FIVE

FOR
FORTY
FOUR
FOURTEEN
FOURTH
FROM
FRONT

G

GAMES
GET
GETTING
GIVE
GIVES
GO

GOES
GOING
GOOD
GOOD WORK
GOODBYE
GoT
GRAY
GREEN
GUESS

H

HAD
HAND
HANDHELD UNIT
HAS
HAVE
HEAD
HEAR
HELLOC
HELP

TI Extended BASIC

203



LIST OF SPEECH WORDS

HERE MEMORY PRINTEZR
HIGHER MESSAGE PROBLEM
HIT MESSAGES PROBLEMS
HOME MIDDLE PROGRAM
HOW MIGHT PLUT
HUNDRED MODULE PUTTING
HURRY MORE Q
1 MOST R
I WIN MOVE RANDOMLY
IF MUST READ [read]
IN N READ! (red)
INCH NAME READY TO START
INCHES NEAR RECORDER
INSTRUCTION NEED RED
INSTRUCTIONS NEGATIVE REFER
15 NEXT REMEMBER
1T NICE TRY RETURN
J NINE REWIND
JOYSTICK NINETY RIGHT
JUST NG ROUND
K NOT 5
KEY NOw SAID
KEYBOARD NUMBER SAVE
KNOW 0 SAY
L OF SAYS
LARGE OFF SCREEN
LARGER OH SECOND
LARGEST ON SEE
LAST ONE SEES
LEARN ONLY SET
LEFT OR SEVEN
LESS ORDER SEVENTY
LET OTHER SHAPE
LIKE ouT SHAPES
LIKES OVER SHIFT
LINE P SHORT
LOAD PART SHORTER
LONG PARTNER SHOULD
LOOK PARTS SIDE
LOOKS PERIOD SIDES
LOWER PLAY SIX
M PLAYS SIXTY
VIADE PLEASE SMALL
MAGENTA POINT SMALLER
MAKE POSITIOR SMALLEST
ME POSITIVE S0
MEAN PRESS SOME
PRINT SORRY
204 Ti Extended BASIC

LIST OF SPEECH WORDS

APPENDIX

SPACE
SPACES
SPELL
SQUARE
START
STEP

STOP

SUM
SUPPOSED
SUPPOSED TO
SURE

-

TAKE
TEEN
TELL

TEN
TEXAS INSTRUMENTS
THAN
THAT
THAT IS INCORRECT
THAT 1S RIGHT
THE (the)
THE1 (tho)
THEIR
THEN
THERE
THESE
THEY
THING
THINGS
THINK
THIRD
THIRTEEN
THIRTY
THIS
THREE
THREW
THROUGH
TIME

TO
TOGETHER
TONE

TOO

TOP

TRY

TRY AGAIN
TURN
TWELVE

TWENTY Z
TWO ZERO
TYPE

u

UHCH

UNDER
UNDERSTAND
UNTIL

up

UPPER

USE

v

VARY

VERY

W

WAIT

WANT
WANTS

WAY

WE

WEIGH
WEIGHT
WELL

WERE

WHAT

WHAT WAS THAT
WHEN
WHERE
WHICH
WHITE

WHO

WHY

WILL

WITH

WON

WORD
WORDS
WORK
WORKING
WRITE

X

Y
YELLOW
YES

YET

YOU

YOU WIN
YOUR

TI Extended BASIC

205



Adding Suffixes
to Speech Words

L ADDING SUFFIXES TO SPEECH WORDS

This appendix describes how to add ING. S, and ED to any word available in
the Solid=State Speech™ Synthesizer resident vocabulary.

The code for a word is first read using SPGET. The code consists o’ a
number of characters, one of which tells the speech unit the length of the
word. Then. by means of the subprograms listed here, additional codes can
be added to give the sound of a suffix.

Words often have tralling-off data that make the word sound more natural

but prevent the easy addition of suffixes. In order to add suffixes this trailing-
off data must be removed.

The following program allows you to input a word and. by trying different
truncation values, make the suffix sound like a natural part of the word. The
subprograms DEFING {lines 1000 through 1130), DEFS1 (lines 2000 through
2100), DEFS2 (lines 3000 through 3090). DEFS3 (lines 4000 through 4120).
DEFED1 (lines 5000 through 5070), DEFED?2 (lines 6000 through 6110),
DEFEDS3 (lines 7000 through 7130), and MENU (lines 10000 through 10120)
should be inpu! separately and saved with the MERGE option. {The
subprogram MENU is the same one used in the illustrative program with
SUB.) You may wish to use different line numbers. Each of these
subprograms (except MENU) defines a suffix.

DEFING defines the ING sound. DEFS1] defines the S sound as it occurs at
the end of “cats.”” DEFS2 defines the S sound as i1 occurs at the end of
“cads.” DEFS3 defines the S sound as it occurs at the end of **wishes."”
DEFEDI defines the ED sound as it occurs at the end of “passed.”” DEFED2
defines the ED sound as it occurs at the end of “‘caused.”” DEFED3 defines
the ED sound as it occurs at the end of “heated.™”

In runaing the program. enter a 0 for the truncation value in order to leave
the truncation sequence.

100 R_EM XN NN R NN

110 REM REQUIRES MERGE OF:

120 REM MENU (LINES 10000 THROUGH 10120)
130 REM DEFING (LINES 1000 THROUGH 1130)
140 REM DEFS1 (LINES 2000 THROUGH 2100)

150 REM DEFSZ2 (LINES 3000 THROUGH 3090)

160 REM DEFS3 (LINES 4000 THROUGH 4120)

170 REM DEFED1 (LINES 5000 THEOUGH 5070)
180 REM DEFED2 (LINES 60CC THEQUGH 61.0)
190 REM DEFED3 (LINES 7000 THFQUGH 7130)
200 BEM *REREEXERERHEHREEXRH

210 CALL CLEAR

220 PRINT “THIS PROGRAM IS USED TO™

206 TI Extended BASIC

APPENDIX

230 PRINT “FIND THE PROPER TRUNCATION"
. 240 PRINT "VALUE FOR ADDING SUFFIXES"
250 PRINT *TO SPEECK WORDS.": :

f 260 FOR DELAY=1 TC 300::NEXT DELAY

270 PRINT "CHOOSE WHICH SUFFIX YGCU”
280 PRINT “WISH TO ADD.":
290 FOR DELAY=1 TO 200::NEXT DELAY

300 CALL MENU(8,CHOICE)

310 DATA 'ING','S' AS IN CATS,'S' AS IN CADS,'S" AS IN WISHES,
'ED' AS IN PASSED,'ED' AS IN CAUSED, ED' AS [N HEATED,END

,_ 320 IF CHOICE=C OR CHOICE=8 THEN STOP
. 330 INPUT "WHAT IS THE WORD? "":WORD$

340 ON CHOICE GOTO 250,370,390,410,430,450,470

| 350 CALL DEFING(D$)

360 GOTO 480

b 370 CALL DEFS1{D$)!CATS

L 180 GOTO 480

| 390 CALL DEFS2(D$)!CADS

E 400 GOTO 480

410 CALL DEFS3(D$)!WISHES

420 GOTO 480
430 CALL DEFED1(D$)!PASSED
440 GOTO 480

b 450 CALL DEFED2(D$) ICAUSED
| 460 GOTO 480

47C CaLL DEFED3(D$) !EEATED

480 REM TRY VALUES

490 CALL CLELR

. 500 INPUT “TRUNCATE HOW MANY BYTES? ":L

510 IF L=0 THEEN 300

520 CALL SFGLT(WORD$,B3$)

530 L=LEN{B%|-L-3

540 ($=SEGE(B$,1,2)&CHRS (L) &SEGH(BS,4,L)
550 CALL SAY.,C3&D$)

560 GOTD 500

207
Tl Extended BASIC



ADDING SUFFIXES TO SPEECH WORDS

ADDING SUFFIXES TO SPEECH WORDS

APPENDIX

The data has been given in short DATA statements (o make it as casy as
possiblego input. It may be consolidated to make the program shorter.

1000 SUB DEFING{A$)

1010 DATA 96,0,52,174,30,65

1020 DATA 21,186,90,247,122,214
1030 DATA 179,95,77,23,202,50

1040 DATA 153,120,117,57,40,248
1050 DATA 13:,173,209,25,39,85

1060 DATA 22%5,54,75,167,29,77

1070 DATA 10%,91,44,157,118,180
1080 DATA 166,97,161,117,218,25
1090 DATA 115G,184,227,222,249,238,1
1100 RESTORE 1010

1110 ag=""

1120 FOR I=1 TO 55::KEAD A::AB=A$ARCHRE(A)::NIXT I
1130 SUBEND

2000 SUB DEFS1(A$)1CATS

2010 DATA 96,3,26

2020 DATA 14,56,130,204,0
2030 DATA 223,177,26,224,103
2040 DATA 85,3,252,106,106
2050 DATA 128,95,44,4,240
2060 DATA 35,11,2,126,16,121
2070 RESTORE 2010

2080 4%="

2090 FOR I=1 TO 29::READ A::AB=AP&CHRE{A)::NEXT I
2100 SUBEND

3000 SUB DEFS2(A3)ICADS

3010 DATA 96,0,17

3020 DATA 161,253,158,217

3030 TATA 168,213,198,86,0

3040 TATA 223,153,75,128,0

3050 CATA 959,139,62

3060 BESTCRE 3010

3070 A$=-v

3080 FOR I=1 T0 20::READ A::A$=AB&CHR3(A)::NEXT I
3090 SUBEND

208 TT Extended BASIC

4000 3UB DEFS3(A$) IWISHES
4010 DATA 96,0,34

4020 DATA 173,233,33,84,12
4030 DATA 242,205,166,55,173
4040 DATA 93,222,68,197,188

] 4050 DATA 134,238,123,102

4060 DATA 163,86,27,59,1,124
4070 DATA 103,46,1,2,124,45
4080 DATA 13€,129,7

4090 RESTORE 4010

4100 Ag=""

Ii 4110 FOR I=1 TO 37::KEAD 4::A3=A$RCHR$(A)::NEXT I

4120 SUBEND

5000 SUR DEFED1(A$) !PASSED

5010 DATA 96,0,10

5020 DATA 0,224,128,37

5030 DATA 204,37,240,0,0,0

5040 RESTORE 5010

5050 43=""

5060 FOR I=1 TO 13::READ A::A$=A3&CHRE(A)::NEXT I
5070 SUBEND

6000 SUB DEFID2{A$)!CAUSED
6010 DATA 96.0,26

6020 DATA 172,163,214,59,35
6030 DATA 109,170,174,68,21
6040 DATA 22,201,220,250,24
6050 DATA 69,148,162,166,234
6060 DATA 75,84,97,145,204
6070 DATA 15

6080 RESTORE 6010

6090 A%=""

6100 FOR T=1 TO 29::READ A::A$=ABKCHRH(A)::NEXT I
6110 SUBEND

Tl Extended BASIC

209



ADDING SUFFIXES TO SPEECH WORDS

7000 SUB DEFED3{A$) HEATED
7010 DATA 96,0,36

7020 DATA 173,233,33,84,12
7030 DATA 242,205,166,183
7040 DATA 172,163,214,59,35
7050 DATA 109,170,1%4,68,21
7060 DATA 22,201,92,250,24
7070 DATA €9,148,162,38,235
7080 DATA 75,84,97,145,204
7090 DATA 178,127

7100 RESTORE 7010

7110 A$="

7120 FOR I=1 TO 39::READ A::A3=A$&CHR${A)::NEXT I
7130 SUBEND

10000 SUB MENU{COUNT,CHOICE)

10010 CALL CLEAR

10020 IF CCUNT>22 THEN PRINT "TOO MANY ITEMS" ::
10030 RESTCRE

10040 FOR I=1 TO COUNT

10050 READ TEZMPS

10060 TEMP$=SEGS(TEMFS,1,25)

10070 DISPLAY AT(I,1):1;TEMP$

10080 NEXT I

10090 DISPLAYT AT{I+1,1):"YOUR CHOICE: 1"

CHOICE=0 :: SUBEXIT

10100 ACCEPT AT(I+1,14)BEEP VALIDATE(DIGIT)SIZE(-2):CHOICE

10110 IF CHOICE<1 OR CHOICE>COUNT THEN 10100
10120 SUBEND

210

TI Extended BASIC

N APPENDIX
i ADDING SUFFIXES TO SPEECH WORDS

| You can use the subprograms in any program once you have determined the
b number of bytes to truncate. The following program uses the subprogram

| DEFING in lines 1000 through 1130 to have the computer say the word
 DRAWING using DRAW plus the suffix ING. Note that it was found that

' DRAW should be truncated by 41 characters to produce the most natural
 sounding DRAWING. The subprogram DEFING in lines 1000 through 1130
is the program you saved with the merge option.

§ 100 CALL DEFING(ING$)

F110 CALL SPGET{'DRAW",DRAWS)

120 L=LEN(DRAW$)-3-41! 3 BYTIS OF SPZECH OVERHEAD, 41 BYTES TRUNCATED
| 130 DRAW$=SECS (DRAWS,1,2) &CHR$(L)&SEGS (DRAWS, 4,L)
b 140 CALL SAY("WE ARE’,DRAWS&ING$, "Al SCREEN")
150 GOTO 140

£ 1000 SUB DEFING(A$)

1010 DATA 96,0,52,174,30,65

1020 DATA 21,186,90,247,122,214

1030 DATA 179,95,77,13,202,50

1040 DATA 153,120,117,57,40,248

l 1050 DATA 133,173,209,25,39,85

11060 DATA 22%,54,75,167,29,77

£1070 DATA 10%,91,44,157,118,180

1080 DATA 169,97,161,117,218,25

F 1090 DATA 119,184,227,222,243,238,1

1100 RESTORE 1010

11110 A$=""

}1120 FOR I=1 TO 55::READ A::A$=A$&CHRE(A)::NEXT I
11130 SUBEND

(Press SHIFT € to stop the program.)

] 211
j TI Extended BASIC



Errors

The following lists all the crror messages that Tl Extended BASIC gives. The
first lis#is alphabetical by the message that is given, and the secend list is
numeric by the number of the error that is returned by CALL ERR. If the
error occurs in the execution of a program. the error message is often
followed by IN line-number.

Sorted by Message

# Message Descriptions of Posstble Errors
74 BAD ARGUMENT
* Bad valuc given in ASC. ATN, COS, EXP. INT, LOG,
SIN, SOUND, SQR, TAN, or VAL.
* An array element specified in a SUB slatemnent.
* Bad first parameter or (00 many parameters in LINK
61 BAD LINE NUMBER
* Line number less than 1 or greater than 32767,
* Omitted line numboer.
* Line number outside the range | through 32767
produced by RES.
57 BAD SUBSCRIPT
* Use of too large or small subscript in an array.
* Incorrect subscript in DIM.
79 BAD VALUE
* Incorrect value given in AND, CHAR, CHRS, CLOSE,
EOF. FOR, GOSUB, GOTO, HCHAR, INPUT. MOTION,
NOT. OR. POS, PRINT. PRINT USING, REC, RESTORE,
RPTS. SEGS, SIZE. VCHAR, or XOR.
* Array subscripl value grealer than 32767.
* File number greater than 255 or less than zero.
More than three lones and one noise generator specificd
in SOUND.
* A value passed (o a subprogram is not acceptable in the
subprogram. For example, a sprite velocity value less
than - 128 or a character value greater than 143.
* Value in ON...GOTO or ON..GOSUB greater than the
rumber of lines given.
* Incorrect position given alter the AT clause in ACCEPT
or DISPLAY.
67 CAN'T CONTINUE
* Program has been edited after being stopped by a
Ereakpoint.
Program was not stopped by a breakpoint.
69 COMMAND ILLEGAL IN PROGRAM
* BYE, CON, LIST. MERGE. NEW, NUM, OLD. RES, or
SAVE used in a program.

212 TI Extended BASIC

! 44 FOR-NEXT NESTING

f 130 VO ERROR

k36 IMAGE ERROR

2 T!Exiended BASIC

APPENDIX

* READ or RESTORE with data not present or with a
string where a numeric value is expected,

* Line number after RESTORE is higher than the highest
line number in the program.

* FError in object file in LOAD.

* Wrong ype of data read with a READ statement.

* Attempt to use CLOSE, EOF. INPUT, OPEN, PRINT,
PRINT USING, REC, or RESTORE with a file that does
not exist or does not have tke proper attributes.

* Nol enough memory to use a lile.

The FOR and NEXT statements of loops do not align
properly.
* Missing NEXT statement.

* An crror was detected in trying to execute CLOSE,
DELETE. LOAD, MERGE, OLD. OPEN, RUN, or SAVE.

* Not enough memory to list a program.

b 16 ILLEGAL AFTER SUBPROGRAM

3 * Anything but END. REM. or SUB afler a SUBEND.

* An error was detecled in the use of DISPLAY USING.
IMAGE, or PRINT USING.

* More than 10 (E-format) or 14 {(numeric format)
significant digits in the format string,

* [IMAGE string is lorger than 254 characters.

§ 25 IMPROPERLY USED NAME

* An illegal variable name was used in CALL. DEF, or
DIM.

* Using a TI Extended BASIC reserved word in LET.

* Using a subscripted variable or a string variable in a
FOR.

* Using an array with the wreng number of dimensicns.

* Using a variable name differently than originally
assigned. A variable can be only an array, a numeric or
string variable, or a user defined function name.

* D'_mc'nsioning an array wice.

* Putting a user defined function name on the left of the
cguals sign in an assignment statement.

* Using the same variable twice in the parameter list of a
SUB statemtent.




ERRORS

81

INCORRECT ARGUMENT LIST
* CALL and SUB mismatch of arguments.

83 INPUT ERROR
* An error was detected in an INPUT.
60 LINE NOT FOUND
* [Incorrect line number found in BREAK. GOSUB, GOTO.
ON ERROR, RUN, or UNBREAK. or after THEN or
ELSE.
* Line to be edited not found.
62 LINE TOO LONG
* Line too long to be entered inlo a program.
39 MEMORY FULL
* Program too large to execute one of the following: DEF,
DELETE. DIM, GOSUB. LET. LOAD, ON...GOSUB.
OPEN. or SUB.
* Program too large to add a new line, insert a line,
replace a line, or evaluate an expression.
49  MISSING SUBEND
* SUBEND missing in a subprogram.
47 MUST BEIN SUBPROGRAM
* SUBEND or SUBEXIT not in a subprogram.
19 NAME TOO LONG
* More than 15 characters in variable or subprogram
name.
43 NEXT WITHOUT FOR
* FOR statement missing. NEXT before FOR, incorrect
FOR-NEXT nesting. or branching into a FOR-NEXT
loop.
78 NO PROGRAM PRESENT
* No program present when issuing a LIST,
RESEQUENCE. RESTORE, RUN, or SAVE command.
10 NUMERIC OVERFLOW
* A number oo large or too small resulting froma *. +.
—. /operation or in ACCEPT, ATN, COS, EXP, INPUT,
INT, LOG. SIN, SQR. TAN. or VAL.
* A number outside the range — 32768 to 32767 in PEEK
or LOAD.
70 ONLY LEGAL IN A PROGRAM
* One of the following statements was used as a
command: DEF. GOSUB, GOTO, IF, IMAGE, INPUT, ON
BREAK, ON ERROR, ON...GOSUB, ON...GOTO, ON
WARNING. OPTION BASE, RETURN, SUB. SUBEND. or
SUBEXIT
214 Tl Extended BASIC

APPENDIX
ERRORS

25 OPTION BASE ERROR
* OPTION BASE executed more than once. or with a
value other than 1 or zero.

97 PROTECTION VIOLATION
* Attempt to save, list, or edit a protected program.

48 RECURS/VE SUBPROGRAM CALL
* Subprogram calls itself. directly or indircctly.
51 RETURN WITHOUT GOSUB
* RETURN without a GOSUB or an error handled by the
previous execution of an ON ERROR statermnent.

56 SPEECH STRING TOO LONG
* Speech string retumed by SPGET is longer than 255
characters.

40 STACK QVERFLOW
* Too many sets of parentheses.
* Not enough memory to evaluate an expression or assign
a value.

54 STRING TRUNCATED
* A string created by RPTS, concalenation (& operator),
or a user defined function is longer than 255 characters.
* The length of a string expression in the VALIDATE
clause is greater than 254 characters.

24 STRING-NUMBER MISMATCH
* A string was given where a number was expected or
vice versa in a T1 Extended BASIC supplied function or
subprogram.
* Assigning a string value to a numeric value or vice
VErsa.
* Attempting to concatenate ("&' operator) a number.
* Using a string as a subscript.
135 SUBPROGRAM NOT FOUND
A subprogram called does not exist or an assembly
language subprogram named in LINK has not been
lcaded.

T1 Extended BASIC 215



ERRORS

14 SYNTAX ERROR

An error such as a missing or extra comma or
parenthesis, parameters in the wrong order, missing
parameters, missing keyword, misspelled keyword.
keyword in the wrong order. or the like was detected in
a TI Extended BASIC command. statement. function, or
subprogram.
DATA or IMAGE nct first and only statement on a line.
[tems after tinal )"
Missing “#" in SPRITE.
Missing ENTER, tail comment symbeol (!}, or statement
separator symbol (::).
Missing THEN alfter IF.
Missing TO after FOR.
Nothing afler CALL. SUB, FOR, THEN, or ELSE.
Two E's in a numeric constant.
Wrong parameter list in a T1 Extended BASIC supplied
subprogram.

* Going into or out of a subprogram with GOTO, GOSUB.

ON ERROR, etc.
* Calling INIT without the Memory Expansion peripheral
attached.

* Calling LINK or LOAD without first calling INIT.

* Using a constant where a variable is required.

* More than seven dimensions in an aray.
UNMATCHED QUOTES

* Odd number of quotes in an input line.

UNRECOGNIZED CHARACTER
* An unrecognized character suchh as 7or % is notina
quoted string.
* A bad field in an object file accessed by LOALD.

-+ = * »

- * * #® *

B
g

Tl Exrended BASIC

APPENDIX

¢ ERRORS
Sorted by #
#® Message
10 NUMERIC OVERFLOW
14 SYNTAX ERROR
i 16 ILLEGAL AFTER SUBPROGRAM
£ 17 UNMATCHED QUOTES
f 19 NAME TOO LONG
b 20 UNRECOGNIZED CHARACTER
f 24 STRING-NUMBER MISMATCH
§ 25 OPTION BEASE ERROR
j 28 IMPROPERLY USED NAME
. 36 IMAGE ERROR
E 39 MEMORY FULL
- 40 STACK OVERFLOW
| 43 NEXT WITHOUT FOR
I 44 FOR.NEXT NESTING
} 47 MUST BE IN SUBPROGRAM
t 48 RECURSIVE SUBPROGRAM CALL
b 49 MISSING SUBEND
.51 RETURN WITHOUT GOSUB
f 54 STRING TRUNCATED
[ 56 SPEECH STRING TOO LONG
$ 57 BAD SUBSCRIPT
1 60 LINE NOT FOUND
F'61 BAD LINE NUMBER
£ 62 LINE TOO LONG
67 CAN'T CONTINUE
§ 60 COMMAND ILLEGAL IN PROGRAM
70 ONLY LEGAL IN A PROGRAM
t 74 BAD ARGUMENT
278 NO PROGRAM PRESENT
¥79 BAD VALUE
81 INCORRECT ARGUMENT LIST
§83 INPUT ERROR
84 DATA ERROR
97 PROTECTION VIOLATION
k109 FILE ERROR
130 11D ERROR
SUBPROGRAM NOT FOUND

E TI Extended BASIC 217



Index

The pagesJisted in italics show where the language elements are used in an

illustrative program.

A

Absolute value function (ABS) . . . .. 20, 46

ACCEFT statement . .. .17, 47-49. 28, 30,
31,32, 48. 134, 136 183

Addition . . .. I 2
ALL, ERASE clause .. .. ... .. 47.77
Ampersand operator . .. ...... ... ..4]
AND logical operator . ... . ... .. 42,175
APPEND clause . ... 138
Arctangent function [ATN) ....... 20.51
Arithmetic expressions . . .. ... ... .. 41
Arithmetlc hierarchy ... ... ..., ..4]
Arithmeticoperators . .. ... ... ... .. 41
AITays . . ... 76
ASCIl charactercodes . . ... ..., .. . 195
ASCH function(ASCY . .. ... .. ... 20,50

Assignment slatement (LET} . ... 17, 111,
30,55, 58.65.69, 78, 87, 90,9196, 99.
113 116,117, 122, 127 128,132, 142,
145,157, 158.168, 171,175,176, 178,

183, 186

ATclavse ... .. ... ... ... ... 4.77
B

Backspace key. .. ... .. ... ..., 12
BASE, OPTION statement .. ... ... .14}
BEEPclause .. ..... .... ... ... 7. 77
Binarycodes .... ... ..... . ... 43-44
Blankspaces . . ... ..... ....... ... 39

Branctes, program . .S5ee GOTO. GOSUB,
ON...GOTO,ON...GOSUB

BREAK command ... ....16.26.52 130
Breakkey . ........ .. ... . ... 13
Breakpolnts . .. ...... ..... 16, 26, 52
Built-in functions . ... .. ... 20
Built-in subprograms ... ... .. o021
BYEccmmand .. ... ... ... ... 17.54
C

CALIL CHAR subprogram .. 22. 25, 56, 58,

65,120, 122,142, 174. 175

CALL CHARPAT subprogram . 18,23, 59
CALL CHARSET subprogram . . . . . 23,60
CALL CLEAR subprogram . . . . 21.61,48,

55, 8. 60. 61, 65, 78, 87. 90, 96. 99,
103, 106, 108,109, 116, 117, 120. 122,
125,130,132, 134, 136, 137, 142, 145,
149,151,153, 157. 156,162,174, 175,
177.178. 185

CALL COINC subprogram . . 18. 22, 5. 65,
176
CALL COLOR subprogram . . . .19.21.22,

25,66, 58, 78, 142. 175, 176

CALL DELSPRITE subprogram . . . . .. 22,
25,75.177

CALL DISTANCE subprograr. . . . . 18,22,
25, 80

CALL ERR subprogram . . . 18, 23, 26, 83.
84,132

CALL GCHAR subprogram . ...18.21.88

CALL HCHAR subprogram . .. . 19,21, 92,
58, 142,175

CALL INIT subprogram . . . . .. ... 22,101

CALL JOYST subprogram .18, 21, 108

CALL KEY subprogram . 18 21,78, 109

CALL LINK subprogram .. . ... .. 22,112

CALL LOAD subprogram .. .. ...22 115

CALL LOCATE subprogram . . . 18, 22, 25.
116,176,177

CALL MAGNIFY subprogram . . . . . 22,25,

118, 120, 142, 176
CALL MOTION subprogram . .22, 25, 125,
176. 177, 108, 109, 122, 125, 176. 177

CALL PATTERN subprogram .. .22 25,
142,176, 177

CALL PEEK Subprogram .. .. ... 22,143

CALL POSITION subprogram. . . . . 22,25,
146, 176, 177

CALL SAY subprogram . . . 19,22, 24, 154,
172

CALL SCREEN subprogram .. . 19, 21, 25,
165, 84, 175

CALL SOUND subprogram . .. . . .. 19, 22,
24,172,171

CALL SPGET subprogram . ... ... 18,22,
24, 164, 172

CALL SPRITE subprogram . .. . 19, 22, 25,

173. 63, 108, 109, 116. 120, 122, 125.
142,174, 175, 176

CALL VCHAR subprogram . .. 19, 21, 189,
58, 87. 176

CALL VERSION subprogram . 18, 23. 190

CALLsubprogram............. 55,183

Charactercodes . . .. ........... 67. 200

Character conversion function (CHRS) . . .
20, 60. 78

Character definition subprogram
(CHAR) .. .. .. 22,25, 56, 58. 65, 120.
122, 142, 174, 175

Characterlimit ... ... ... ... ..... 34
Characler paltern subprogram
(CHARPAT) ... .. .... .18,23,59
Character set subpiogram
(CHARSET) ...... ... ....... 23.60
Charactersets .. .......... ... .... 200

k CLOSE statement

F DISPLAY statement .

L INDEX
Circumflex ...... . .. ... ..... .41
Clearkey .. ........... ... . ... .13

Clear screen subprogram (CLEAR) . 21

61. 49, 55, 58,60, 61,65, 78, 87, 90. 96.
99,103, 106, 108, 109,116, 117, 120,
122,125,130 132, 134, 136, 137, 142,
145,148, 151 153, 157. 158, 162, 174.
175,177,178, 183

.. 62,106, 113.153

- Codebreaker program ... ... ... ... .. 27
Coincldence of sprites subprogram

| (COINC} ... .. .. 18.22.25,64. 65,176

L Colon .. .. ........... . ... ... 19, 147

} Colorcodes ... ... ...... .. 66, 165, 198

- Color cembinations . .. ...... ... ... 199

| Color of characters subprogram

(COLOR) ... .19, 21,22 25,66, 58. 78,
142 175, 176

| Color of screen subprogram

{SCREEN) . .. .19.21.25, 165,84, 175

t Comma ... ... oL 19, 147
| CommandMode . ... ... ...... 11
¥ Commands . ... ... .. .16
} Commands used as statements . ... ... 16
b Comment, tail (1) . ... ... ... ... ... 38
[ Computer transfer . . . .. Sce ON...GGSUB,
E  ON..GOTO

Computer'slimit. . ..... ... .. .. . 39

Concatenation . ... ...... ... .... ... 41
Y Constants _ ... ... ... ... 39

CONTINUE command .. .16, 26,52, 68
f Conversiontable . .. . ... ... . Y i
¥.Correclingerrors. . .. .. ...... ... .... 11
§ Cosine function(COS) . . ... ... . 20. 69
E D

' DATA staternent .. .. ... 70,71,99, 183
f Debugging . ... ... ... .. 26

DEFine statement .. . ... ...... 72,122
i DELETE clause .. . ... . ......... .. 62
R DELETE command .. ... .......16.74
‘Deletekey . ........ ... ........ .. 13

Delete sprite subprogram

¥ (DELSPRITE) .. ...... 22,925, 75, 177
EDIGITclause . ... .. ... ... . ... 47

DIMensicn statement . . . .. .76, 28, 48, 96

DISPLAY USINGstatement . ... 19,79, 97
i DISPLAY clause . .. .......... 139.113

-19,77, 28, 29, 30,
31,32, 48, 48, 78, 106, 125, 134 136,
183

Distance of sprites subprogram

§  (DISTANCE) ... .18,22,25.80
Division. .. ......... ... ... ..., 41
fDownarrowkey ... ... 13.32

E

EditMode .. ... ............. ..., 11
ELSEclause . ..... ... .. .......... 94
End of file function (EOF) . . . .. 20,82, 113
ENDstatement . .................. 81
Enterkey ... ........... ... . 13.28-32
ERASE Al.LLclause ... .......... 47.77
Erasekey ... ..... ... .. ... ..... 13
ERROR, ON statement . . .26, 83, 131, 84,

132, 158

Errorhandling. .. .. .. ... ..... 26.211
Error subprogram .. . .18, 23, 83, 84, 132
Error messages . ... ... .. o211
Exponental function (EXP) . ... ... 20,85
Exponentiation .. .. .. ............. 41
Expressions ....... ... ... . ... ... 41
F

Files . ... ... ... .. ... ... ..... 38
FIXEDclause . . .. ....., .. 139,106,113

FOR-TO-STEP statement . . .. 18. 86. 127.
30,32,48.49,.58,.60.71. 78. 87. 96, 99,
106,120, 122,125, 127, 130, 142, 151,
153,157,171, 175, 177. 183

Forwardspacekey .. .. .. ... ... ...... 12
Functions, built-in ... .. ... .. .. . 19-20
Functions, user written . . . . .. .. 21,201
G

Get character subprogram (GCHAR) | .18,
21.88

GOSUB statement .. ... ... 21, 89, 58, 90.
120, 122, 157
GOTO statement . .. . .. g1, 29,49, 58. 61,

78.87.90,91, 103,108, 109, 113, 1186,
117,134, 142, 145,151,162, 174, 175,
176, 177,178

Greaterthan . ... ..... ... ........ 41
H
Hexadecimal . .. . ............... .. 57
Hierarchy, arithmetic .. .. ... ... ... 41
Horizental character subroutine

(HCHAR) . .. .. 19.21,92,58, 142, 175
I

IF-THEN-ELSE staternent . . 94. 29, 30. 32.
48, 78, 90, 91, 96, 99, 109, 113, 117,
132,134,136, 145, 157, 158, 162. 176.
178

.MAGE statement. .. .19, 97,99, 100, 103

‘nitlallization subprogram (INIT) . .22, 101

NPUT statement [files) . . 104, 106, 153
NPUT stalement (kevboard) L17.102.

[ .

INPUTClausc ............ 139,106, 113

I

l ..
74.90,96, 103, 117,145, 151, 157, 162

218

TI Exlended BASIC

 TI Extended BASIC

219



Insertkey . ... ... 13 N
integer fahetion (INT) . .. .20, 107 Nanie (variable) . . ... ... 32-40
INTERNALclause .. ... ... ....139, 106 NEWcommand .. .......... .. 16,126
J NEXT statement .. 18, 86, 127, J?Ogllgz
‘ST , 99, L1200,
Joystick subprogram (JOYST) ... .18, 21, }1325?2201;17 1726)8?436151. A
108 171,175,177, 183
K Noist . .. .. 170
Keystroke subprogram (KEY} ... 1821y gy decimalform ... ... .39
76. 109 40 NOT logical operator .. . ..........42
Keywords ..o o Notational convenlions . . . .. ... ... .. 39
L NUMBER command . . .13, 128, 28, 29, 3]
Leaving Tl Extended BASIC . . ... .34 Numberrepresentation . ... ... .. .39
Leftarrowkey .. .. .. ... .12 Numberstring function (VAL). L 1HE
Length function (LEN) . . ..... .. 20, 110 Numbers . . . .. o 39
Lessthan....... .......... .. 41 NUMERICclause . . ................ 17
LET statement. . .. 17, 111,30, 55, 58, 65. Numerlc constants .. ... ...........39
69. 78. 87. 90. 91, 96. 99, 113. 116, Numericexpressions. . ... .. .. ... ... 11
117. 122,127, 128, 132, 142, 145, 157, Numericvariables. . ... ... ... 11
158, 168, 171,175, 176, 178, 183, 186 o
Limits. comp_uter """ e N TMBE T 39 QLD command . ...... .. ... ... 16.129
Line numbering, automaiic (NUMBER) | © oN. | GOSUB statement ... 21,133,131
"""""""""""" T ON...GOTO statement .. .. 135,136,183
Line numbers . ... 38 ON'BREAK statement . ... .. 26.52.130
Limes .. ..o - 38 ONERROR statcment . . . . ... 26.83.131.
Link subprogram (LINK) ... .. 22, 11? 84. 132. 158
LINPUT statement. . ... ... E7. 113 N WARNING statement. . . .. .. 26.137
LISTcommand . ... .. ... 61 GppNsatement . . 138.106. 113.153
Load subpmgrdm LOAD) o ',22‘ 115 Operators (Arithmetic, Relational.
Locate sprite subprogram (LOCATE) . . 18 String. Logical) . ... .......41-44
22.25. 116,176 177 OPTIONBASE statement .. ... 141
Logarithmic furcdon (LOG) . . 20. 17 ORlogicaloperator ... ... ... 42,183
Logical operators. .. ... 32 Order ofoperations . .. ......... .. 41
LOoOp ... ... e 86 OUPUL o oo 1R
M OUTPUTclause ... ....... ...... 139
Magnify sprites subprogram OVerfiow . . . . e 39
{(MAGNIFY) . 22,25, 118,120, 142, p
175 29 Parameter .. ...... ..... 19,72, 180
Mantissa .. . . B 1‘1 Parentheses .. .. ... ... 41
Master se]ection list T Pattern of sprites subprogram
Master title screen . . ... e (PATTERN) .. ..22.95. 142, 176,177
Maximum funciion (MA‘(I 20, 121 Pattern-identifier conversior. table . . . .57,
MERGE clause ... .. .. ... 1863 197
MERGE command . . . . .. 16,122 subprogram (PEEK) ... ... .22.143
Minimum function (MIN) . ... ... .20, 124 Pendinginputs .. ... ... 105
Modes Lo 1 Pendingoutputs ... . ..o 1486
Motion of sprites subprogram Pi, valueof function (PT) . . .. .20. 144, 69.
{(MOTION} . ... ..22. 95, 125,108, 109. 168. 186
122,125,176, 177 Positionin a string tunction (POS) . . .. 20.
Multiple statement separator (::} . .. .. .38 145 -
Multiplication .. .. .. R 41. Position of spriles %uhprogram
Musical tone frequencies .. ... oo 196 (POSITION) . 92,95 146, 176. 177
POWETS . .. . . . 41

220

TI Extended BASIC

K PRINT statement . . 19, 147. 55, 60. 6!, 65.
69, 71, 84. 90, Q1. 96, 99, 103, 1086,
113,117, 127,128, 130, 132, 137, 145,
149, 151. 153,157, 158. 162, 168.178.
183, 186

Print separators . 219, 147
LPRINT USING slalement 19 96 150, 99,

Kk 100,103
WProgram lines .. ... - .38
BPROTECTED clause . . .. .. 163
Pseudo-random numbers 151 159
T . 14,54
otanon mark:: .................. 39
Random number function (RND) . .20, 159
ndom numbers . ... 151. 159
NDOMIZE statement .. .. 151, 28,122,

151,175
AD statement .. 17. 70, 152. 71, 99 183
RECciaJse e 104, 147
sRecord position function (REC) . - .20, 153,

. 153

edokey . ... .. ..... 13. 28,30, 31, 32
elational expressions ... ... ... .. 41
LATIVE clause .. .. .. ... ... 138 153

Mark statement . . 154, 28, 90, 91,120,

132,158, 176,177
Remarks. tail{?). ... ........ .... .38
Remole controls ... . 108
| peatsmnglumuon(RIYlS) 2() 160
R eson'ed words. .. .. ... .. 40
Reset . .. .. ... . ... .54
SEQUENCE command . . .. .. 16, 155

RESTORE statement . . . 70. 156, 153, 183
IRETURN statcment . . 26, 157, 158, 58, 90,
g 120,122, 132,134, 136

Right arrow key . ... .. ... .. ... .. .12

RUN command . ... .. 16. 161,162,183
RunMode . .. ... oL .11
unning a TI Extended BASIC

.................... .38

... 16183

> y subprogra:‘n [‘EAY] ‘‘‘‘‘ 19.22. 24,

164, 202

pcientific notation . .. ... 39,97

pereen color subprogram (SCREEN) .. 19,
b 21,235,165, 84, 175

pegmen: of a string function(SEGS) . .. 20,
f 166

permnicolon ... ... o 19. 147,185
peparator Svmbol (::) o038

SEQUENTIAL clause . . ... ... . 138,106
Sign of a number function (SGN) . . 20, 167
Sine function (SIN) . ..., .. .. 20, 168

SlZEclause . ......... ... ... .. 47.77

SIZEcommand . .. ...... .. .. 17. 169
Sound generation subprogram
(SOUND) ... .. ..........19.22 24,
170, 171
Spaces . ... .. L Lo 39
Special funclionkeys .. .. ... L. 12-14
Speceh oo oo 000 o202

Speech pattern geting subprogram
(SPGET) . C18.22,24, 172,202,
164,172

Split console keyboard .. .. .. ... 200

Sprite definition subprogram
[(SPRITE). . . .. 19.22, 25, 173, 65, 108,
109,116, 120,122,125, 142, 174. 175,
176

Sprites . ... .. oL L, 22,125
Square roof tumtnon[SQR] ...... 20,178
Statement Separalor Symbol ;) . .38
Statements. ... 16 17 26

STOP statement . .178. 31, 55, 84. 90,
113.120. 122, 132, 157, 158. 162, 178

String constants .. .. ..., . L. 39
String expressions .. ... .. .. o4l
String funcions .. ..o L 39
String variables . e 40
String-nurmber function [bTR‘-‘:] 20,179
String- q(‘gnem funetion (SF(JSJ 20,166
Strings . . . . .39, 41
sUB stdtemr‘nr ............ ]80. 55. 183
SUBEND statement ... .. .. 184,55, 183
SUBEXIT staicment ... ... . 184. ! 83
Subprograms, uscr writlen. . .. 23-24, 55
Subprograms, built-in .. ... ... 8,21.55
Subroutines. user writtenn .. ... ... . .21
Subsceripl ... oo 6
Subtraction .. ... 0L 41
Suffixes .. .., .. 205
T

Tabular funcrion (TAB) . J20. 1853, 103
Tail comment svmbol(!) ... ... .. ... 38
Tangent function (TAN). .. . ... .. 20, 186
THEN clause . ... .. .. P < |
Tones . .. ... F N (3]
T RACElommdnd .......16,.26, 186

Trigonometric [uncrions (ATN, COS,

SIN.TAN) ... ... ... 51,69, 168. 186

1 Extended Basic

221



INDEX

U
UALPMAclause. . ... ... ........ 47
UNBREAK command . . . . . 16, 26, 52, 187
UNTRACE command . . . .. ... 16, 26, 187
Uparrowkey .. .. ... ... -..... 12
UPDATEclause . . . . ... ... ... 139
User-defined functions .. .. ..... .. .. 21
v
VALIDATE clause .. .... .. ........ 47
Value function (VAL) ... ... .. .. 20, 188
Variables .. .. ... .. ... .. . 39
VARIABLE clause .. ... ....... ..139
Verslon of BASIC subprogram

(VERSION) ... ....... .... 18,23, 190
Vertical character subprogram

(VCHAR) . ... .. .. 19.21,189.58. 176
w
WARNING, ON statement .. ... .. 26,137
Wired Remoie Controllers . .. ... .. .. 108
X
XOR logical operator . ... ........ ... 42
292

Tl Extended BASIC

Il Extended BASIC

223



SERVICE AND WARRANTY
INFORMATION

THREE MONTH LIMITED WARRANTY

IN CASE OF DIFFICULTY

If TFExtended BASIC does not appear to be working properly, check the

following:

1. Power — Be sure all devices are plugged in. Then turn on the power (o
the units in the proper sequence: Peripheral devices first (if you have
them), followed by the console and monitor. Insert the TI Extended BASIC
module carefully,

2. Connector Separation — Check for proper alignment of the console and
any accessory devices such as the Disk Drive Controller, Speech
Synthesizer. and RS232 Interface. Remove and reinsert the TI Extended
BASIC module.

3. If none of the above procedures corrects the difficulty, consult “If You
Have Questions or Need Assistance™ or see the “Service Information”
portion of the User's Reference Guide that came with your comiputer.

I vou have questions concerning module repair or peripheral, accessory, or
software purchase. please call our Consumer Relations Department at (800)
858-4565 (toll free within the contiguous United States except Texas) or (BOO)
692-4279 within Texas. The operators al these numbers cannot provide
lechnical assistance.

For technical questions abcut programming. specitic applications, ete., you
can call (806) 741-2663. Please note that this is not a {oll-free number and
collect calls cannot be accepted.

As an alternative, you can wrile to:
Consumer Relations Department
Texas Instruments Incorporated
P.O. Box 53
Lubbock, Texas 79408

Because ol the number of suggestions which come to Texas Instrumens
from many sources conlaining both new and oid ideas, Texas [nstruments
will consider such suggestions only if they are freely given to Texas
Instrumer:ts. It is the policy of Texas Instruments (o refuse to receive any
suggestions in confidence. Therefore. if you wish to share vour suggestons

language program which you have developec, please include (e following

statement in your leiter:
“All of the information forwarded herewith is presented to Texas
Instruments on a nonconfidential, nonobligatory basis: no relationship.
confidential or otherwise, expressed or implied, is established with
Texas Instruments by this presentation. Texas Instruments may use,
copyright, distribute. publish. reproduce. or disposc of the information
in any way without compensation to me."”

224 TI Extended BASIC

THIS TEXAS INSTRUMENTS TI EXTENDED BASIC COMMAND MODULE
WARRANTY EXTENDS TO THE ORIGINAL CONSUMER PURCHASER OF THE
MODULE,

WARRANTY DURATION: This command module is warranted to the
original consumer purchaser for a period of three months from the original
purchase cate.

WARRANTY COVERAGE: This command module is warranted against
defective materials or workmanship. THIS WARRANTY IS VOID IF THE
COMMAND MODULE HAS BEEN DAMAGED BY ACCIDENT, UNREASONABLE
USE, NEGLECT, IMPROPER SERVICE OR OTHER CAUSE NOT ARISING OUT
OF DEFECTS IN MATERIAL OR WORKMANSHIP,

WARRANTY DISCLAIMERS: ANY IMPLIED WARRANTIES ARISING OUT OF
THIS SALE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO THE ABOVE THREE MONTH PERIOD. TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE MODULE
OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR
DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER USER. Some states
do not allow the exclusion or limitation of timplied warranties or conseguential
damages. so the above limitations or exclusions may not apply to you.
LEGAL REMEDIES: This warranty gives you specific legal rights, and you
may also have other rights that vary from state to state.

WARRANTY PERFORMANCE: Please first contact the retailer from whom
you purchased the module and determine the exchange policies of the retailer.
During the above three month warranty period your Tl Extended BASIC
command module will be repaired or replaced with a new or reconditioned
unit of the same or equivalent maodel {at TI's option) when the module is
returned by prepaid shipment to a Texas Instruments Service Facility listed
below. The repaired or replacement unit will be warranted for three months
from the date of repair or replacement. Other than the postage requirement.
no charge will be made for the repair or replacement of in-warranty modules.
Texas Instruments strongly recommends that you insure the module for
value prior to shipment.

Texas Insiruments Consumer Service Facilities

Canadian customners only:

Geophysical Services Incorporated

41 She lcy Road

Richmend Hill. Ortario. Canada L4C5G4

[/ S. Residents:

Texds Instruments Service Facility
2303 North University

Lubbeock, Texas 79415

Consumers in California and Oregon may contact the following Texas
Instruments office for additional assistance or information.
Texas Instruments Consumer Service Texas Instruments Consumer Service
831 South Douglas Street 6700 Southwest 105th
El Segundo. Calitornia 90245 Kristin Square, Suite 110
(213)973-1803 Beaverton, Oregon 97005
(5031643-6758

TI Extended BASIC






ADDENDUM
T! Extended BASIC Owner’s Manual

The program listing on page 153 in the manual is incorrect. Line 110
should read:

>110 QPEN #1:"DSK1.RNDFILE",EELATIVE, INTERNAL

Copyright < 1983 Texas Instruments Incorporated 1053596-2
Printed in U.S.A. (Use with 1041345-1)



IMPORTANT PRODUCT INFORMATION
FOR TI EXTENDED BASIC

Tl Extended BASIC has been enhanced and modified for use with
both the TI-89/4A and TI-99/4 Computers. Several important product
differences should be noted in relation to the type of computer you
have, Please read this folder and mark the appropriate changes in
your copy of the TI Extended BASIC owner's manual,

Although the TI-99/4A and TI-99/4 Computers are similar, the
TI-99/4 A is eastly recognizable by its standard typewriter keyboard
which returns both upper-case (large capital) and lower-case {small
capital) alphabetical characters. Depressing the ALPHA LOCK key
locks the alphabet keys in upper-case mode. To release ALPHA LOCK,
press the key again.

When the TI Extended BASIC moadule is in place, both the TI-99/4A
and TI-99/4 Computers share several enhancements, However, cach
computer also has its own unique features. These features are
discussed in the following paragraphs.

AUTO REPEAT FEATURE

When using Tl Extended BASIC on either computer, holding down a
key for more than one second automatically causes its symbal to he
repeated on the display until you release the key.




SPECIAL FUNCTION KEYS

The T1-99/4 A Computer has the same special computer functions as
the TI-99/4. However, these functions aie fiequently assigned to
different keys on the TI-99/4A Computer. The following chart
compares the keystroke sequences for the function keys on the two
units.

Function Keys

Key TI-99/4 TI-99/4A

Name Keys Keys
AID SHIFT A FCTN 7
CLEAR SHIFT C FCTN 4
DEt ate SHIFTF FCTN 1
INSert SHIFT G FCTN 2
auir SHIFT G FCTN =
REDO SHIFT R FCTN 8
ERASE SHIFTT FCTN 3
LEFT arrow SHIFT & FCTN S
RIGHT arrow SHIFTD FCTND
DOWN arrow SHIFT X FCTN X
UP arrow SHIFTE FCTNE
PROC'D SHIFT V FCTN S
BEGIN SHIFT W FCTN S
BACK SHIFT Z FCTN 9
ENTER ENTER ENTER

In addition to these functions, the T1-99/4A Cumputer has functions
represented as symbols on the fronts of the individual keyfaces.
These functions may be accessed by pressing FCTN and the
appropriate key stmultaneously.

CONTROL KEYS

The T1-99/4A Computer also has control characters which are used
primarily for telecommunications. To enter a control character, hold
down the CTRL key and press the appropriate letter. number. or
aymbeol key.




EXPANDED CHARACTER SET — TI-99/4A

As explained in vour TI Extended BASIC manual, codes 32-95 are
the predefined standard ASCII characters on the T1-99/4 Computer,
The cursor and edge characters, ASCII codes 30 and 31, are assigned
to character set 0. The undefined character codes (128-135 and
136-143) are assigned to scts 13 and 14, respectively.

These codes and the corresponding characters are listed in Appendix
C of the manual. The CALL KEY character codes are also listed in
Appendix C. Appendix E in the manual lists the 15 character code
sets which may be used for color graphics.

Duc to the inclusion of the lower-casc character sct, the defined
characters on the TI-99/4A Computer are the standard ASCII
characters for codes 32 through 127. The following chart lists these
characters and their codes.

ASCIH ASCH
CODE CHARACTER CODE CHARACTER
30 B (cursor) 55 7
31 (edge character) 56 8
32 (space) 57 Q
33 ! exclamation point) 58 : [colaon)
34 * (quote} 59 ; [semicolan}
35 # (number or pound sign) 60 < (less than)
36 S (dollar) 61 = (equals)
37 % (percent) 62 > (greater than)
a8 & (ampersand) 63 ? {question mark)
39 ' (apostrophe} 64 @ (at sign)
40 ( (open parenthesis) 6b A
41 } (close parenthesis) 66 B
42 * (asterisk) 67 C
43 + (plus) 68 D
44 . ([comma) 69 E
45 - [minus) 70 F
16 . [period) 71 G
47 / (slant) 72 H
48 0 73 1
49 1 74 J
50 2 75 K
51 3 76 L
52 4 77 M
53 5 78 N
54 6 79 O




ASClH ASClHI

CODE CHARACTER CODE CHARACTER
80 P 104 h T
81 Q 105 i
82 R 106 |
83 S5 107 k
84 T 108 1
85 U 109 m
86 v 110 n
87 w m 0 Displayed
88 X 112 p on screen
89 Y 113 q r as small
90 Z 114 r capitals.
91 [ fopen bracket) 115 s
92 \ (reverse slant) 116 t
93 | (close bracket) 117 u
94 Alexponentiation) 118 v
95 _ (line) 119 w
96 * (grave) 120 b
97 a 121y
98 b ) 122 z /
99 | Displayed 123 { (left brace)
100 d on screen 124 | (vertical line)
101 e as small 125 ! (right brace)
102 r | capitals. 126~ (tilde)
103 g 127 DEL (appears on

screen as a
blank)

CALL KEY SUBPROGRAM

The information given on the KEY subprogram in Chapter 4 of the TI
Extended BASIC manual is accurate for the T1-99/4 Computer. The
values of 3, 4, and 5 are not accessible as key units.

However, the TI-99/4A maps key units O through 5 to specific modes
of operation. If the key-unit is O, the keyboard is mapped in
whichever mode was specified by the previous CALL KEY program
line.

If the key-uinit is 1. input is taken from the left side of the keyboard.
if the key-unit is 2, input is taken from the right side of the
keyboard.

A key-unit of 3 maps the computer into the standard '1'1-9%/4
keyboard mode. Both upper- and lower-case characters are returned

as upper-case characters only. Function codes 1 through 15 are
active, but no control characiers are returned.




A key-unit of 4 places the computer in Pascal mode with both upper-
and lower-case characters active. The function codes 129 through
143 and the control character codes 1 through 31 are also active.

The key-unit 5 maps the TI-99/4A Compuler in the BASIC mode.
Both upper- and lower-case characters are active. The active function
codes are 1 through 15, and the active control characier codes are
128 through 159 (and 187).

In addition, codes are assigned to the function and contrel keys so
that these can be referenced by the CALL KEY subprogram in TI
Extended BASIC. The codes assigned depend on the key-unit value
specified in a CALL KEY program statement. The following tables
show typical code assignments.

FUNCTION KEY CODES

Codes
TI-99/4 & Pascal Function Funciion

BASIC Modes Mode Name Key
1 129 AlD FCTN 7

2 130 CLEAR FCTN 4

3 131 DELete FCTN 1

4 132 iNSert FCTN 2
5 133 QUIT FCTN =

6 134 REDO FCTN 8

7 135 ERASE FCTN 3

8 136 LEFT arrow FCTN S

9 137 RIGHT arrow FCTN D

10 138 DOWN arrow FCTN X

11 139 UP arrow FCTNE

12 140 PROC’D FCTN 6

13 141 ENTER ENTER

14 142 BEGIN FCTN §

15 143 BACK FCTN 9




Codes
BASIC Pascal
Mode  Mode
129 1
130 2
131 3
132 4
133 5
134 6
135 7
136 8
137 9
138 10
139 il
140 12
141 13
142 14
143 15
144 16
145 17
146 18
147 19
148 20
149 21
150 22
151 23
152 24
153 25
154 26
155 27
156 28
157 29
158 30
159 31

CONTROL KEY CODES

Mnemonic

Code Press
SOH CONTROL A
STX CONTROL B
ETX CONTROL C
EQOT CONTROL D
ENQ CONTROL E
ACK CONTROL ¥
BEL CONTROL G
BS CONTROL H
HT CONTROL |
LF CONTROL J
VT CONTROL X
FF CONTROL L
CR CONTROL M
S50 CONTROL N
SI CONTROL O
DLE CONTROL P
DC1 CONTROL Q
DC2 CONTROL R
DC3 CONTROL S
DC4 CONTROL T
NAK CONTROL U
SYN CONTROL V
Erp CONTROL W
CAN CONTROL X
EM CONTROL Y
SuUB CONTROL Z
ESC CONTROL .
FS CONTROL ;
G5 CONTROL =
RS CONTROL 8
us CONTROL 9

Commerts

Start of heading

Start of text

End of text

End of transmission
Enquiry
Acknowledge

Bell

Backspace

Horizontal tabulation
Line feed

Vertical tabulativn
Form feed

Carriage return

Shift out

Shift in

Data link escape
Device control 1 (X-ON)
Device control 2
Device control 3 (X-OFF)
Drevice cunliul 4
Negative acknowledge
Synchronous idle
End of lransinission block
Cancel

End of medium
Substilute

Escape

File separator

Group seyanator
Record separator

tinit separator

You may also obtain detailed CALL KEY subprogram information,
including keyboard diagrams, in your User’s Reference Guide for the
TI-99/4A Computer.

CALL VERSION SUBPROGRAM

The VERSION subprogram (discussed in Chapter 4 of your T
Extended BASIC manual) now returns a value of 110 on both
computers,




DATA STATEMENT

The computer reads any information entered after a DATA statement
as a part of the DATA statement. Therefore. in a mulli-statement
program line, a DATA statement should not be {ollowed by another
statement.

SCIENTIFIC NOTATION

Whenever you use scientific (or exponential) notation. be certain that
the "L is an upper-casc (large capital) character. A lower-case e’
may cause your program to tunction improperly.

PRE-SCAN — |@P—- and |@P +

After you enter RUN to start a program. you may notice a pause
before the program aclually begins. This pause is the time the
computer takes to “pre-scan’’ your program to establish memory
space for variables, arrays, and data. Then the computer proceeds
through each instruction. performs the appropriate functions, and
establishes variable values. Since the time required to pre-scan
depends on the length of the program, you may want to decrease the
pre-scan pause, particularly if you have a long program.

Tl Extended BASIC's new pre-scan commands, @P - aud !@FP +.
allow you to control which instructions will not be pre-scanned.
Because the purpose of the pre-scan is to set memory space for
variables, only those instructions which conltain the first reference to
the variables need to be pre-scanned. Therefore, many other
instructions in your program do not require a pre-scar.

Careful program planning is required to minimize the statcments
that need the pre-scan. When certain types of statements (as
explained here) are used in your program, the procedures listed
below should be included in the pre-scan.

B Enter your first DATA statement within the pre-scan.

m Include the first use of each variable and/or array. (Also,
include the OPTION BASE statement, if used.)

B Include the first reference to each CALL statement of any
subpregram.

m Include all DEF statements for user-defined functions.

B Include all SUB statements and SUBEND statements in the
pre-scan.




Note that a variable in a user-defined (SUB) subprogram is
considered to be unique from any other variable used elsewhere in
your program. even though the name and vaiue may be the same.
Therefore, each variable used in a user-defined subprogram must be
included in the pre-scan.

To use the pre-scan option. first be certain that your completed
program runs successfully. Then, at the beginning of a group of
function statements, use the '@P - command to "“turn off” the pre-
scan. The following statements will not be pre-scanned. allowing the
execution of your program to begin more quickly. Any statements
related to variable names (not previously referenced during pre-scan)
return a syntax error if the pre-scan is "'off.” Note that '@P - cannot
be followed by another statement in a multiple statement,

To resume the pre-scan, simply enter the command 1@P + . This
command causcs the pre-scan to “‘turn on’ and memory space {or
variables may be set. Remember to use the !@P + command before a
5UB or SUBEND statement and do not incorporate this command as
a part of a multiplc statement.

You may choose to use the pre-scan feature several times throughout
your program. By turning the pre-scan on and off, your program can
begin to execute more efficiently. The effectiveness of the pre-scan is
more noticeable in large programs than small programs. Note that
when using the TI-99/4A Computer, the commands, !@P - and

'@P + . may also be entered with a lower-case ''p’* character.

The following examples illustrate how to include the pre-scan
statements in an existing program. The final example demonstrates
the most efficient use of the pre-scan feature by making use of a
GOTOQO statement.




Examples:

Original program:

100 CALL CLEAR

110 CALL CHAR{96, "FFFFFFFFFFFFFFFF''}
120 CALL CHAR{42,"QFOFOFOFOFOFOFOF )
130 .

140 .

150 .

160 CALL HCHAH(12,17,42)

170 CALL VCHAR(14,17,96)

180 DELAY=0

190 FOR DELAY=1 TQ 500

200 NEXT DELAY

210 DATA 3

220 .

230 .

With pre-scan control added:

10 DATA 3
100 CALL CLEAR

110 CALL CHAR{96,"FFFFFFFFFFFFFFFF")
120 CALL CHAR(4Z,"QFOFQFOFOFQFQFOF')
125 !@P-

130 .

140 .

150 .

155 !8P+

160 CALL HCHAR(12,17,42)

170 CALL VCHAR(14,17,96€)

180 DELAY=0

185 [@P—

190 FON DELAY=1 TO 500

200 NEXT DELAY

210 .

220 .

230 .

Notice that the first DATA statement has been moved to the
beginning of the program so that it is included in the pre-scan. By
including statements 125, 155, and 185, the pre-scan is turned off
and on and off again. This causes the program to begin to execute
more quickly.




With GOTO added:

You have the added ability to “trick” the computer into establishing
mcmory space for CALL statements, as well as variable-related
statements, without actually performing those statemenis. To do
this. simply use a GOTQ instruction in your program. The following
cxample demonstrates the original program adapted with a pre-scan
and a GOTO statement.

10
20

100
116
120

DATA 3

GOTO 100::DELAY::CALL CHAR::CALL CLEAR::CALL HCHAR::CALL
YCHAR: : 18P-

CALL CLEAR

CALL CHAR(96, FFFFFFFFFFFFFFFF")

CALL CHAR(42,"'OFCFOFOFQOFQFOFOF')

130 .
140 .

150
160
170
190
200

CALL HCHAR(12,17,42)
CALL VCHAR(14,17,96}
FOR DELAY=1 TO 500
NEXT DELAY

210 .
220 .

230 .

Note that the GOTQ method causes the necessary memory space (0
be rescrved in line 20. However, the statements in line 20 do not
execule until they are encountered further on in the program. Thus,
as shown in the preceding and following examples, you can put all of
your variable references together and your subprogram calls do not
have to be syntactically correct. This can be the most cfficient use of
the pre-scan option.

100
110
120
130

GOTO 180::X,Y,ALPHA,BETA,Z=DELTA::DIM B(10,10)
CALL KEY::CALL HCHAR::CALL CLEAR::CALL MYSUB
DATA 1,2,STRING

DEF F{X)}=1-X*SIN(X}

140 .
150 .

160
170

18P

180 .
190 .
200 .

10




PROGRAMMING WITH LOWER-CASE LETTERS

Device names must be entered in upper-case (large capital) letters
only. For example, "DSKI1™ is a correct device name, but “Dsk1™ is
not. Any reference to a device name spelled in lower-case (small
capital) lelters results in an crror message.

File names arc also very specific. Not only are they exact as to the
correct spelling. but they are also specific as to the use of upper- or
lower-case letters, For example, the file name, MYFILE, is not the
same file as Myfile (a combination of large and small capital letters).
Any file name listed in part or whole by lower-casc letters Is not
accessible by the TI-99/4 Computer. Only the TI-99/4A Computer can
access a program named or called in lower-case letiers.

Lower-case letters in DATA statements or quoted strings function
correctly and offer a wide variety of programming techniques on the
TI-99/4A Computer. However. lower-case quoled strings and data are
not displayed if you run the program on a T1-99/4 Computer. if you
plan to run yonr program on both the TI-99/4A and TI-99/4
Computers, take special care when using lower-case letters.

To display the lower-case letters in your TI-99/4A Computer program
when the program is run on a T1-99/4 Computer, simply include the
following statements. Small capital letters are created similar to thoese
of the TI-99/4A. Be sure 1o allow adequate memaory space and
excoution Lme.

100 FOR [=65 T0 90

110 CALL CHARPAT(I,A$)

120 B$=""0000 &SEGS(AS,1,4) &SEGE(AS,7,4)43EGE(AS,13,4)

130 CALL CHAR(I+32,B$)

140 NEXT I

Insertion of the above program lines into your TI-99/4A program
allows pre-programmed lower-case characters Lo be displayed by the
T1-99/4 computer.

SIZE COMMAND

The SIZE example, using the Memory Expansion unit discussed in
Chapter 4 of your TI Extended BASIC manual, now inforns yuu that
you have 24488 “BYTES OF PROGRAM SPACE FREE™.

TAIL REMARKS

If you previously programmed a TAIL REMark that is identical to the
pre-scan instructions (!@P + or !@P - ). your program will no ionger
function properly. These groups ol characters are now considered to
be “reserved words” for the operation of the computer.

11




CORRECTION TO APPENDIX C

ASCII code 12 in Appendix C of your TI Extended BASIC manual
should be stated as the "PROC'D’ character rather than as the
"“CMD’' character.

LARGE PROGRAM FILES

Some programs written with Tl BASIC may be toe large to run with
Tl Extended BASIC because TI Extended BASIC requires more
system nverhead than TT BASIC. If yon attempt to load such a
program, your system will lock up. Before you can continue, you
must turn your computer off, wait several seconds, and then turn it
on again.

Entering a CALL FILES(1) or CALL FILES(2) command before
loading your program may free enough memory Lo run the program
with TI Extended BASIC. (A [ull explanaton of the CALL FILES
command can be found in the Disk Memory System manual.)

If a CALL FILES command does not free enough memory, you must
shorten your TI BASIC program by deleting statements until the
program fits in the memory available with TI Extended BASIC.
However, if you have a Memory Expansion unit, you can run the
entire program by using the following procedure:

1. As a safety measure, make a backup copy of vour Tl BASIC
prograrm on a cassette tape or diskette.
2. With the Memory Expansion unil attached and turned on, load

your program with TI BASIC. Next, delete several statements, and
save the shortened program on cassette tape or diskette, Then try

to load this shortened program with TI Extended BASIC.

3. Type the deleted statements back into the proper places in your
program.

4. Save your program on a diskette only. You are now ready to run
your program with TI Extended BASIC and the Memory
Expansion unit,

Note: Programs converted in this fashion can only be run with TI

Extended BASIC and with the Memory Expansion unit attached and

turned on. They are not stored in PROGRAM format.

12




MEMORY EXPANSION UNIT AND CASSETTE-BASED
PROGRAMS

The Memory Expansion unit adds 32K bytes of Random Access
Memory (RAM) to the built-in memory of the computer. However,
even with the Memory Expansion unit available, the largest T1
Extended BASIC program that can be stored on a cassette tape is
12K bytes in size. Note that, although the length of the actual
program is limited, utilizing the Memory Expansion unit provides
other advantages. For example, with the unit attached and turned
on, your program (which can be up to 12K bytes in length) is stored
in the expansion RAM. The numeric data generated by the program
is stored in the Memory Expansion unit and the string data is stored
in the computer's built-in memery. Without the unit, the program
must be shorter so that both it and the generated data can be stored
in the computer’s built-in memory.

CONTINUE COMMAND

A CONTINUE cumnnand is uscd tu resume your program when you
break by using a BREAK command or by pressing CLEAR. However,
il your last command (before the CONTINUE command) results in a
crror, the program may not continue properly. Your final command
to the computer hefore the CONTINUE command must be correct. If
you receive an ERROR message, be sure to enter a correct command,
such as a PRINT command, before resuming program execution.

MANUAL ERRORS

Page 39

The second sentence in the third paragraph of the “"Numeric
Constants™ section should be corrected to read “...number is greater
than 99 or less than — 99, then .7

Pages 79 and 150

The string used in a string-expression with the DISPLAY ... USING
and PRINT ... USING slatements may be more general than shown in
the examples in the manual. For example, both of the following are
valid statements.

PRINT USING 4%:X,Y
DISPLAY USING RPT$(#,5)8VE:4(12)

Pages 89, 133. and 1305

The GOSUB. ON GOSUB, and ON GOTO statements should not be
used to transler control to and from subprograms.

13




Page 114
If you press CLEAR when using the LIST command, the listing stops
and cannot be restarted.

Pages 118 and 119

The graphic figures at the bottom of page 118 and the top of 119
should be reversed.

Page 185

The TAB function cannot be used in the PRINT .., USING or
DISPLAY ... USING statements, Also, the second paragraph of this
explanation should be corrected to read as follows: *'If the number of
characters already printed on the current record is less than
numeric-expression, the next print-itern is printed beginning on the
position indicated by numeric-expression. If the number of
characters already printed on the current record is greater than or
equal to the position indicated by numeric-expression, the next
print-itemn is printed on the next record beginning in the position
indicated by numeric-expression.

Page 200

In Appendix H, Color Combinations, the color codes for the last two
listings tn the 'Best’” category should be as follows.

14, 10 Magenta on Light Red
3. 16 Medium Green on White

In the "Fourth Best™ category, the third combination in the second
column should read:

6,2 Light Blue on Black.

14




Format Lines

The following list gives corrections that should be made to the
indicaled formats and also shows the present format information.
DIM Statement (page 76)
Correct Format: (integerl|integer2]...[.integer?][,...]
Present Format: (integerl| integer2|...[.integer?7][....])
DISPLAY Statement (page 77)
Correct Formal: [SIZE (numeric-expression)]:]print-list
Present Format: |SIZE (numeric-expression)]:|variable-list
DISPLAY ... USING Statement (page 79)
Correct Formats: USING string-expression|:print-list]
USING line-number|.print-list]
Prcacnt Formats: USING string-cxpression{:variable-list]
USING line-number|:variable-list]
LINPUT Siatement (page 113)
Cotrect Format: #ftle-number| REC record-number]:
Present Format: [[#¥file-number][ REC record-number]:]
PRINT = USING Statement (page 150)

Correct Format: [#file-number|,REC record-number],]
Present Format: [#file-number[ REC record-numberi]

SPRITE Subprogram (page 173)

Correct Format: dot-column|,row-velocity.column-velocityl|....])
Present Format: dot-column,[.row-velocity,column-velocity]]....])

15




